
www.manaraa.com

Piotr Habela

Metamodel for Object-Oriented Database Management
Systems

Ph.D. Thesis

Submitted to the Scientific Council of the Institute of Computer Science,

Polish Academy of Sciences

Advisor:

 doc. dr hab. Kazimierz Subieta

Warsaw, November 2002

www.manaraa.com

– I –

Abstract. A database metamodel is inherent to every DBMS. Appropriate constructs
reflect the declarations of data-definition and data-manipulation languages, and are
necessary to implement the internal DBMS mechanisms. Particularly, a metamodel
definition provides a base for implementation of database’s schema repository. However
in object-oriented DBMS these notions are often treated implicitly or (as in case of
ODMG standard) suffer from rather ad-hoc approach to their definition. This work is
intended to show the importance of providing an explicit database metamodel definition
that is both simple and extensible. The main roles of database metamodel have been
enumerated. Since different responsibilities of database metamodel together with
inherent complexity of object data model can easily lead to unacceptably complicated
metamodel definition, the radically simplified, “flattened” form of metamodel structure is
proposed. Moreover, the proposed solution assumes the usage of generic means to
manipulate database metadata instead of a large set of narrowly specialize operations
assumed by the ODMG standard. The prototype implementation of metadata repository
is provided to prove the feasibility of the simplified metadata structure. To show the
importance of metamodel extensibility, the database schema-based mechanism to support
the configuration management of ODBMS application has been implemented over the
flattened metamodel structure. A number of additional remarks, concerning future
extensions to a database metamodel as well as its capability to accept custom extensions
in the context of current challenges for database management systems, have been
presented.

www.manaraa.com

– II –

CONTENTS

1 INTRODUCTION .. 1
1.1 THE ROLE OF A METALEVEL ... 1
1.2 DATABASE METAMODEL.. 3
1.3 MOTIVATION AND SCOPE ... 5
1.4 RESULTS .. 5
1.5 METHODS AND TOOLS USED IN THIS WORK .. 7
1.6 ORGANIZATION.. 8

2 RELATED RESEARCH AND SOLUTIONS.. 9
2.1 OMG CORBA – OBJECT MODEL AND INTERFACE REPOSITORY ... 9

The IDL object model ... 10
Dynamic Invocation Interface and Dynamic Skeleton Interface .. 12
Interface Repository ... 13

2.2 OMG UML.. 15
2.3 META OBJECT FACILITY .. 19
2.4 COMMON WAREHOUSE METAMODEL .. 22
2.5 MODEL DRIVEN ARCHITECTURE.. 23
2.6 ODMG .. 25
2.7 THE OASIS PROJECT ... 29
2.8 METALEVEL ARCHITECTURE IN PROGRAMMING LANGUAGES .. 30
2.9 XML SCHEMA AND THE RESOURCE DESCRIPTION FRAMEWORK (RDF).................................... 32
2.10 OBJECTIVITY/DB ... 36

3 THE CONCERNS OF DBMS METAMODEL.. 39
3.1 DATA MODEL DESCRIPTION.. 40
3.2 DBMS SCHEMA IMPLEMENTATION .. 41
3.3 GENERIC PROGRAMMING THROUGH REFLECTION... 42
3.4 ADDITIONAL SCHEMA ELEMENTS AND EXTENSIBILITY... 44
3.5 SCHEMA EVOLUTION AND SOFTWARE CONFIGURATION MANAGEMENT.................................... 44

Schema evolution in object databases .. 45
Assuring system’s consistency after schema change .. 46
Schema evolution in software change management ... 48
Software Configuration Management... 50
Dependencies among software units... 53

3.6 SEPARATION OF CONCERNS.. 56
3.7 ONTOLOGY .. 57

4 PROPOSED FEATURES OF THE DBMS METAMODEL .. 58
4.1 METADATA MANIPULATION LANGUAGE .. 58
4.2 SIMPLIFYING THE METAMODEL .. 59

Minimality of a metamodel ... 60
Flattening a metamodel structure... 60

4.3 CONCEPTUAL VIEW OF THE METAMODEL ... 63
The base for metamodel definition.. 63
Metamodel core concepts ... 66
Transforming conceptual metamodel into the flattened form... 68

4.4 DATABASE SCHEMA SUPPORT FOR SCM .. 70
Dependency kinds relevant to the metabase ... 71

Forward dependency and backward dependency.. 71
Side effect dependency... 72
Parametric dependency... 73

Proposed metamodel extensions... 73
Collecting the dependency information .. 75

4.5 EXTENDING ODBMS DATA MODEL: DYNAMIC OBJECT ROLES... 76
Dynamic and multiple inheritance problem ... 77

www.manaraa.com

– III –

Features of dynamic object role ... 80
Incorporating dynamic object role into the metamodel.. 81
Use of the role concept in meta-modeling .. 87

4.6 SEPARATION OF CONCERNS IN A DBMS .. 88
4.7 METAMODEL EXTENSIBILITY MECHANISMS ... 89

5 IMPLEMENTATION .. 91
5.1 FLATTENED METAMODEL – CONCEPTUAL VIEW ... 92
5.2 METAMODEL MANAGER... 93

User interface and functionality of Metamodel Manager... 93
Implementation classes of Metamodel Manager .. 97

5.3 MODEL MANAGER ... 100
User interface and functionality of Model Manager .. 100
Implementation classes of Model Manager .. 104

5.4 DATABASE ANALYZER .. 107
5.5 DEPENDENCY DISCOVERER ... 110

Metamodel extensions... 110
Collecting the dependency information .. 112

5.6 MODEL BROWSER.. 114
5.7 IMPLEMENTATION: ENCOUNTERED PROBLEMS, REMARKS AND CONCLUSIONS 115

6 CONCLUSIONS AND FUTURE WORK .. 117
6.1 ODBMS METAMODEL ROLES AND SUGGESTED SOLUTIONS ... 117
6.2 FUTURE WORK ... 119

7 BIBLIOGRAPHY... 121
8 APPENDICES... 125

A. ABBREVIATIONS ... 125
B. OBJECTIVITY FOR JAVA SIMPLIFIED METAMODEL ELEMENTS ... 126

External Operation ... 126
PCCs Operation.. 127
External Class... 127
PC Class ... 127
Scan.. 128
Attribute ... 128
Parameter.. 128
Relationship.. 128
Primitive Type.. 129
Array .. 129
Database ... 129
Container .. 129
Root.. 129

Meta-Relationships... 130
C. TEST CASES FOR DATABASE ANALYZER AND DEPENDENCY DISCOVERER APPLICATIONS 134

“Address Book” application... 135
“Department – Employee” application.. 136

D. LIST OF FIGURES ... 138

www.manaraa.com

– 1 –

1 Introduction

A definition of a metamodel for an object-oriented database management system

(ODBMS) needs to be prepared to serve several different purposes. As the term meta

suggests, it is a kind of database tool’s self-description and in fact one of important

roles of a metamodel is to precisely explain the meaning and interrelationships of

constructs and features provided by a DBMS. A model developed for a DBMS-based

application constitutes a metadata that is stored within the schema. Metamodel, being a

model of any such user model, determines a logical structure of the schema repository,

and is internally used by the core DBMS mechanisms. The metamodel structure,

together with metadata it describes should not be hidden inside a DBMS though.

Convenient access to metadata and the ability to extend it with additional task-specific

information may be of critical importance e.g. for supporting software configuration

management or integration of heterogeneous data sources. Yet another issue is the

dynamic nature of a database schema. This requires support for modifying schema,

which, together with other actions necessary to maintain a database consistency needs to

be described in terms of a metamodel.

The object data model was proposed to better handle the complexity of today’s

information systems, by providing a richer set of modeling constructs. On the other

hand, it led to much more complex metamodel, which needs to define all introduced

notions, and more effective approaches to managing the complexity of metadata itself

are necessary.

The rapid development of the Internet and the distributed systems technology in

general, brings new challenge for database management systems. The interoperability

and integration of databases requires means to precisely describe local resources as well

as to map data representation to a commonly agreed format. Both these issues are highly

relevant to a database metamodel.

1.1 The role of a metalevel

This section is intended to provide a closer look at the concept of metamodel as

well as to explain the motivation behind explicit definition of such in DBMS.

www.manaraa.com

– 2 –

The meaning of the term “meta” is relative and depends on the entities that are

considered as regular objects. Two fundamental kinds of properties the meta-level

possess can be distinguished concerning its subordinate entities. The first of them can

be called ontological. In order to interpret objects properly (that allows to retrieve some

information, modify data and / or verify integrity rules), the description of their

structure, interfaces and the meaning of the properties they posses is needed. Since such

description would in turn require the definition of the notions used to formulate it,

further meta-levels can be necessary.1 There are several options for terminating such

(potentially infinite) hierarchy. The highest level can be defined using the language with

formally defined semantics [16]. Alternatively, the ambiguity may be minimized by

“loop-backing” the definition of the highest meta-layer and / or by mapping it to

concrete implementational structures. The second aspect of meta-level is of operational

nature. It is assumed, that a metaobject has knowledge about its subordinate objects and

is able to manipulate them. Thus it realizes a usually implicit control of the behavior of

regular objects.

As can be seen from the above outline, the metalevel describes issues inherent to

all systems. However, its explicitness and accessibility may differ. The extent of the

metalevel features determines the application’s ability to discover and modify facts both

about available data structures as well as about its own behavior.

Within the programming language domain, the metalevel has to provide the

reflective capabilities, intended to support so-called separation of concerns.2 Such

features have been classified into two general kinds: introspective and intercessory

capabilities (see e.g. [6]). The former allow examining the structure and functionality of

entities available during run time and using that information to dynamically construct

requests. These features proved to be essential e.g. for development of generic database

browsers or the tools providing transparent persistence for programming language

objects (including many Java-based OODBMS, e.g. DB4o [10] or Objectivity for Java

[33]). The latter (intercessory capabilities) mean the ability to intercept a behavior of

1 A very intuitive metaphor describing the mapping of this aspect of meta-modeling up the metalevel
hierarchy found in [14]: the relations between an object and its class and a class and its metaclass can be
compared to the dependencies between a cake and a form used to bake it and between the form and the
dice used to produce the form. This understanding of the meta term will be assumed in this work in the
sense, that the criteria of distinguishing metalevels will be the instance of relationships between elements.
2 A more detailed discussion of this issue is provided in the further chapters.

www.manaraa.com

– 3 –

interest and interwove separately defined routines that can be easily interchanged, and

what the original code developer needn’t be aware of. Not all flavors of such

functionality are qualified as reflective, as the term is more often associated with the

former of mentioned kinds. For example the trigger / active rule mechanism is treated as

a regular (that is – not reflective) feature. The intercessory capabilities constitute the

inexplicable foundation for realizing the separation of concerns postulate though.

It is necessary to note that the lack of support for the abovementioned reflective

features from the programming language or database system, significantly complicates

the development of software that requires such functionality. Practically, in such case

the only choice to get access to metalevel is the use of preprocessor, which complicates

the development process.

It is rather intuitive that if a given reflective feature proves to be valuable in

general-purpose programming language, its importance for DBMS is at least as big or

even greater, because of the shift toward first-category constructs and demands for

runtime flexibility that are specific to the DBMS.

1.2 Database metamodel

The domain where the term “metamodel” seems to be used most frequently is

conceptual modeling [16]. Nowadays, the best known object-oriented metamodel is

probably the Unified Modeling Language (UML) specification [41]. In that case the role

of a metamodel is to describe concepts of modeling language and to standardize the

well-formedness rules and the metadata interchange formats among tools. On the other

hand, for a DBMS the most important aspect of metamodel becomes the way the

metadata (and the regular data described by it) are structured and manipulated.

Two important desired properties of DBMS motivate making their metamodel an

explicit feature. Those are flexibility and interoperability. Flexibility would require

features like:

• support for generic programming through reflection;

• ability to extend the metadata structure with custom constructs;

www.manaraa.com

– 4 –

• intercessory capability, allowing to isolate certain aspects of behavior and to easily

change their implementation, perhaps in the spirit of the Aspect Oriented

Programming (AOP) [30].

Interoperability would concern integration and collaboration of heterogeneous

databases.

Thus the metadata need to be queried not only to discover the structure of the

described data, but also to provide some hints concerning their meaning / interpretation.

These two roles of metadata are usually referred as appropriately structural metadata

and semantic metadata.

As can be seen from the above requirements, the metamodel responsibilities are

much broader than just the description of an employed data model. Thus it is practical

to define a database metamodel as a description of all those database properties that are

not dependent on a particular database state. Particularly, a metamodel implemented in

a DBMS formally describes and stores the database schema, together with auxiliary data

such as the physical location and organization of database files, optimization

information, access rights as well as the integrity and security rules.

Metamodels for relational systems are easy to manage due to the simplicity of the

data structures implied by the relational model. In these systems, the metamodel is

implemented as a collection of system tables storing entities such as: identifiers and

names of relations stored in the database; identifiers and names of attributes (together

with identifiers of relations they belong to); and so on. Thus while their features can

provide important hint on the required properties of ODBMS metamodel, the designers

of the latter have to be prepared to handle the inherent complexity of an object data

model. As will be shown in further sections, this complexity could severely limit the

usability of ODBMS. Such “metadata management nightmare” (term used in [31])

danger became one of the serious arguments against object databases. Fortunately, this

complexity, although inevitable, can be managed effectively, thus making the additional

cost of the more expressive data model reasonably low.

www.manaraa.com

– 5 –

1.3 Motivation and scope

The aim of this work was the identification and investigation of various

requirements that a design of ODBMS metamodel has to consider. This research was

performed in the context of object-oriented DBMS standardization efforts and thus is

influenced especially by today’s commercially available technologies and existing

standards related to the subject. Taking the ODMG (Object Data Management Group)

ODBMS standard as a starting point, the characteristics and drawbacks of existing

solutions exemplified by this specification have been discussed. The analysis is

intended to provide a possibly complete overview of the issues that need to be

addressed. Next, the necessary improvements to the described metamodel definition are

proposed. The level of detail of proposed solutions differs, depending on the

significance of underlying problem and the level of its awareness expressed in existing

literature. The majority suggested improvements are of relatively general nature, as they

are not intended to constitute a complete standard-like metamodel proposal. The aspects

where the suggested solutions differ substantially from the current state of the art were

illustrated by a prototype implementation of a generic schema repository, in order to

prove their feasibility and usefulness.

1.4 Results

The result is a set of proposed additions and improvements to existing metamodel

solutions, based on the analysis of various ODBMS metamodel roles. The following

issues have been addressed:

• A sufficiently precise and unambiguous description of DBMS constructs and

supporting features, provided by a metamodel definition;

• Suitability of a metamodel definition for its implementation as a part of a DBMS,

guaranteeing good performance and intuitive access;

• Ability of a metamodel definition to evolve as a result of additions or improvements

in future versions of base specification or because of custom vendor- or domain-

specific extensions;

www.manaraa.com

– 6 –

• The required constructs of a data model, supporting useful modeling abstractions

and separation of concerns during design, and their integration into a metamodel

definition;

• The support of database schema for software configuration management

mechanisms (especially in the context of a database schema evolution);

• Metadata structure openness, allowing for extending it with descriptive information

necessary to support the interoperability and integration of distributed databases.

Moreover, a prototype implementation of a generic metadata repository has been

implemented. The aim was to prove the feasibility of the least conventional of proposed

solutions, namely the radically simplified (“flattened”) metamodel structure and the

database schema-based utility to manage the software dependency information in the

context of software configuration management. The following functionality has been

implemented:

• A metamodel definition tool, allowing to develop arbitrary metamodels using the

flattened metamodel structure, in terms of metaobject and meta-relationship kinds,

meta-attributes describing particular kinds of metaobjects and consistency rules

connected with given metaobject or meta-relationship kinds.

• A model management tool for defining models according to previously defined

metamodels and for testing their consistency.

• A model browser for convenient viewing of defined models.

• An analysis utility allowing to extract an Objectivity/DB ODBMS schema into the

simplified metamodel structure.

• A dependency-tracking code (implemented in the form of a Java aspect – see [2]),

which is intended to run during the testing phase of an Objectivity/DB application in

order to detect all dependencies between the application and the database schema

and to store it together with metadata extracted by the abovementioned analysis

utility.

www.manaraa.com

– 7 –

1.5 Methods and tools used in this work

The starting point of the research presented in this work is the ODMG (Object

Data Management Group) standard [34]. However, due to many drawbacks of that

specification, it was not possible to keep the proposed metamodel compliant with the

standard. Nevertheless, the proposed solutions are closely related to the original in the

sense, that it depends on the established terminology and closely follows the object

model known from the mainstream programming languages.

Other important solutions that inspired the proposal presented here are the OMG

(Object Management Group) specifications, especially the UML (Unified Modeling

Language), MOF (Meta Object Facility) and CORBA (Common Object Request Broker

Architecture). The conceptual view of the proposed metamodel has been presented in

the form that guarantees it is OMG MOF-compliant, which allowed to avoid some

ambiguities concerning the notation and terminology used. All of the abovementioned

specifications have been briefly presented in the following chapter.

The prototype implementation of a metadata repository has been realized using

Java language and the Objectivity/DB ODBMS to provide persistency. The same

environment served as an example for which a metamodel (in the form proposed by this

work) has been developed and additional metadata-related features (supporting the

software configuration management) have been implemented. The latter were realized

using the AOP Java language extension, namely AspectJ [2]. The Objectivity/DB

ODBMS and the AOP are described in the following chapter. Moreover, the motivation

behind the AOP is presented and its influence on the ODBMS metamodel development

is discussed.

Another important solution that influenced this work is the stack-based approach

to query languages [52]. Although not directly applied here, it substantiates a very

important assumption: it is possible to efficiently develop an object-oriented,

optimizable [44] query language, seamlessly incorporating a full algorithmic power and

following the object relativism principle. Taking into account the commercial success of

the SQL, this suggests, that the future research concerning object-oriented DBMSs

should assume a more central role of a query language, comparing with the existing

ODMG standard or today’s commercially available ODBMSs. Particularly, based on

the above remarks, in this work it is assumed, that the DBMS metadata should be

www.manaraa.com

– 8 –

accessed and manipulated using an object-oriented query language provided with

imperative constructs rather than through the general-purpose programming languages’

bindings.

1.6 Organization

The remainder of this work provides an overview of the related research and

solutions as well as the requirements specific to DBMS metadata management. Based

on this context, the proposal of a metamodel architecture and its core features is

presented. The prototype implementation using Java and Objectivity/DB ODBMS is

described.

The text is organized as follows: chapter 2 provides an overview of the existing

standards and tools directly or indirectly related to the issue of database metamodel;

chapter 3 enumerates and later presents in detail the desired properties of such

metamodel that are confronted with the existing solutions – especially the ODMG

standard; chapter 4 describes the proposed solution and in chapter 5 the prototype

implementation is presented. Chapter 6 provides some conclusions. Some additional

details describing the prototype implementation are provided in appendices B and C.

www.manaraa.com

– 9 –

2 Related research and solutions

This chapter provides an overview of solutions relevant to the topic of object

database metamodel definition. As can be seen, the chapter is dominated by the

descriptions of standards and some mainstream tools. This is the consequence of the

overall orientation of this work, which considers the issue of a metamodel in the context

of standardization efforts, and attempts to suggest directions towards broadly acceptable

and universal proposal. Thus it is desirable to base it, if not on existing technology and

specification (which would be too limiting assumption), then at least on well known

concepts and commonly used terminology. Another reason is that there are very few

academic papers dealing directly with the issue investigated here. One prominent

example of research focused on object metadata management and based on existing

standard, namely the OASIS [46] project is briefly mentioned here. Some other papers,

which are only partly relevant to the subject, are referenced in the next chapter.

2.1 OMG CORBA – Object Model and Interface Repository

CORBA (Common Object Request Broker Architecture), defined by the OMG

(Object Management Group) consortium, remains one of the most prominent and

mature standards in the area of middleware for interoperability of distributed systems’

elements, although recently it seems to be used less frequently, in favor of EJB and

XML technologies [19]. Applying a standardized middleware to realize this task

follows the well known rule of computing, saying that many complex design problems

can be effectually solved through introduction of an additional level of indirection. In

case of distributed systems, the broker mechanism as such additional element, which

allows to raise the level of abstraction a developer deals with, making the design

independent of the following factors:

• hardware and operation system platforms of distributed system’s constituents;

• server-object location;

• client’s and server’s implementation languages and their internal representation.3

3 Note that in case of CORBA objects the terms client and server are relative to particular interaction. A
given object can act as a server, providing functionality to its clients, while at the same time being
dependent on a functionality of some other interfaces, thus acting as a client.

www.manaraa.com

– 10 –

This allows CORBA-based solutions to successfully address the following tasks:

• integration of heterogeneous systems;

• easy evolution of deployment configuration, including scalability and load-

balancing;

• interoperability of different broker implementations thanks to the use of common

protocol (IIOP) built on top of TCP/IP;

• ability of mutually independent development of the client and the server elements

intended to cooperate in a distributed system. The only “common denominator” of

both parts remains an abstract, programming language-independent interface

definition.

The lookup of object references, message passing, security, consistency and a

number of other issues are supported by Common Object Services, also defined as parts

of CORBA standard.

The IDL object model

What is the most important, the standard has established an architecture for

cooperation of heterogeneous systems at the level of language-neutral object’s

interfaces. Those interface declarations serve later to generate client’s and server’s code

elements in the chosen implementation language (according to standard-defined

language mappings). Those interfaces are defined using Interface Definition Language

(IDL), which, in order to achieve a better conceptualization is based on an object data

model.

The IDL model, although programming language-neutral, is based on the main

constructs of C++ language. This is of course advantageous, as it makes the mapping

between IDL and today’s mainstream object oriented languages quite straightforward.

The most important IDL concept is interface, which can specify features mapped

into externally available properties of an object of the class that implements it.

Inheritance among interface definitions is supported. The properties defined by an

www.manaraa.com

– 11 –

interface can be operations and attributes and the types used to define their signatures

can be of following kinds:4

• primitive types, like float, double, byte, string etc., mostly reusing the keywords

known from the C++, whose standard-defined mapping leads usually to appropriate

primitive types of particular programming language binding;

• object types, described by interfaces, which are mapped into class definition in all

languages supporting such a construct;

• sequences of abovementioned types – parameterized type, which e.g. in Java is

mapped into a static (typed) array;

• structures (using the struct keyword) – a constructor for record-like structures

borrowed from the C++ language; in Java it is mapped into a class;5

• a generic any type, able to accommodate value of every IDL-defined type; it is

useful e.g. in generic programming interfaces.

Operation’s signature written in IDL can also specify exceptions that can be raised

during execution of a given operation. Exceptions are also defined in IDL, where they

can be specified together with their attributes, to additionally describe the exceptional

situation if needed.

It is necessary to note, that all the access to an object defined by the

abovementioned declarations is realized through the remote invocation of operations.

That is, only the operation calls, their parameters, non-object parameter values,

exceptions and object references are passed by a broker between client and server. This

means, that each attribute defined as a field in an interface specification is in fact

realized by a pair of (overloaded) operations with the same name as the attribute: one

(returning value of appropriate type) to read it and the other (with appropriate input

parameter) to modify it. The difference is not purely technical: considering the cost of

remote invocations and object reference passing, it can significantly impact the detailed

design [48]. Assume an example where one, having access to remote object of type

Department wants to change salary of one of its Employees named “Smith”. If the

scenario was the following: 1) getting all references to Employee objects managed by a

4 Module declarations are also supported to provide namespaces for type declarations.
5 Unions and arrays are also supported.

www.manaraa.com

– 12 –

given department; 2) invoking a name() operation on each of returned object references

and comparing it with “Smith”; 3) updating the state of the found object, it would mean

a significant overhead in terms of costly remote invocations and reference passing.6 The

more pragmatic solution would be following: the Department interface provides

operations getEmployeeNames(), returning a sequence of string values and

getEmployee(string name), returning a reference to selected object. This illustrates, that

requirements imposed by a distributed system may contradict some rules of object-

oriented design, when encapsulation, low coupling and more identity-oriented

programming style are considered.

To sum up, the Interface Definition Language provides basic object-oriented

constructs, whose granularity, meaning and even syntax closely follow appropriate

declarative elements of the mainstream object-oriented programming languages.

Dynamic Invocation Interface and Dynamic Skeleton Interface

The static invocation model mentioned above assumes that the code responsible

for invoking and passing the requests to objects of particular interfaces is compiled into

applications. Another mechanism, called Dynamic Invocation Interface (DII), allows for

construction and execution of request without static (that is, compile-time) knowledge

of accessed interfaces. This is provided through the following features, outlined here in

the sequence they are usually used:

• The create_request(..) operation is declared in standard-defined root interface

Object, to create one-use request object connected with a given instance. This

operation specifies the name of the target’s dynamically called operation and

(optionally) a sequence of provided parameters (declared using the any type). The

result is a Request type object, whose interface is described below.

• The add_argument(..) operation of Request object can be optionally used, if

parameters had not been provided at the request creation. All expected arguments

need to be provided in a proper sequence.

• The invoke(..) operation performs the created request, making available the return

value of the invoked operation (if applicable), which is provided as an output

6 More recent “objects by value” specification can be helpful in certain conditions to avoid such
overheads.

www.manaraa.com

– 13 –

parameter of the create_request(..) operation. The delete() operation removes the

used request object.

• The send(..) and get_response(..) operation pair can be alternatively used for

deferred synchronous calls. The latter can be used (if applicable) to return the result

of the request (and to check for execution errors). The poll_response() operation

allows to check, if the request has already been completed.

• Additional operations (sendp(..) and prepare(..)) can be used for preparation of

persistent requests (allowing for asynchronous calls), as well as for using a callback-

style asynchronous calls (sendc(..) operation).

The obviously missing element is the reflective capability that would allow to

extract metadata used later to create a dynamic request. This issue will be described in

the following sub-section.

The Dynamic Skeleton Interface (DSI) is a solution analogous to DII, but located

on the side of interface implementation. Appropriate object can be dynamically

registered as providing the implementation of particular interface. Such an object can

then respond to requests using the information provided within a ServerRequest object,

whose properties include the following:

• A read-only operation identifier;

• A list of parameters, allowing to read input parameters as well as to set the values of

the output parameters;

• Operations to set the result value or to raise an exception.

Interface Repository

The Interface Repository provides for the storage, distribution, and management

of a collection of related objects’ interface definitions [35].

If the definition of a given object is not compiled into an application, in order to

access such object it is necessary to extract appropriate interface specification. Apart

from generic programming (as suggested above), such information may be necessary in

a number of cases, e.g. to support inter-ORB object passing. The Interface Repository

(IR) provides functionality to retrieve such information, that is, the specification

analogous to the one provided with IDL declarations of registered interfaces. The

www.manaraa.com

– 14 –

repository provides operation to directly define new interfaces within it. Alternative

ways of storing such definition include compilation of an IDL file or copying interface

definition from another repository.

With presence of a consistent Interface Repository it is possible to invoke on an

object reference the reflective operation get_interface(). Similarly, like abovementioned

create_request(..) operation, it is defined within the Object interface and thus available

for all CORBA objects.

Each interface definition has assigned its repository identifier, which allows to

maintain the identity of such metadata in presence of multiple repositories. Version

number of an interface is also stored, although the definition versioning is not supported

by any additional mechanism nor semantics [35]. A particular interface definition can

be located in three ways:

• Directly from the ORB (e.g. through the mentioned get_interface() operation on

Object);

• By navigation through the module name spaces (that is, by name);

• By lookup of a specific identifier (that is, by an ID, which may be useful to find a

definition corresponding to another) [35].

With presence of full metadata manipulation functionality, the consistency of the

repository presents a hard problem. Indeed, only the most obvious inconsistencies (like

e.g. name conflict within one interface definition) can be immediately detected and

reported. Thus, the flexibility allowing different means to directly update metadata is

provided at the cost of leaving the consistency of a repository practically unprotected.

Including recent standard’s metadata extensions towards the component model,

the Interface Repository specification now consists of nearly 50 interfaces, which

constitutes a really complex structure to be queried and manipulated by programmer.

Moreover, it is assumed that further extensions (both defined by future standard’s

versions as well as custom, domain- or tool-specific extensions of standard defined

interfaces), would be introduced by specialization of existing definitions.7

7 As explicitly stated in the standard specification, the IR is intended to store additional interface-related
information like e.g. debugging information, libraries of related connectivity code etc. [35].

www.manaraa.com

– 15 –

Despite significant complexity the community seems to accept the solution, as

being a natural consequence of overall standard’s assumption, to provide a possibly

direct support for a number of existing mainstream general-purpose programming

languages.

However, the programming against the Interface Repository is commonly

perceived being very difficult or at least inconvenient. Since in case of database schema

the analogous structures would constitute the core feature instead of auxiliary service,

following the same style in construction of a database metamodel would be

controversial.

2.2 OMG UML

The Unified Modeling Language (UML) provides a graphical notation for

visualizing, specifying, constructing, and documenting the artifacts created at different

phases a software development process [5],[41]. The language was defined as a

unification of three most popular object-oriented software development methodologies

(Booch Method – by Grady Booch, OOSE – by Ivar Jacobson and OMT – by James

Rumbaugh) and soon accepted as a standard modeling language by the OMG, which

allowed to overcome chaos that previously took place within the object-oriented

modeling methods area. Moreover, the fact that UML, in contrast its predecessors, does

not prescribe a particular development process, made it easier for this proposal to

succeed. The UML is now considered as a dominant notation for software systems’

modeling and design.

The language defines a rich number of notions together with graphical notation

elements used to visualize them. The following kinds of diagrams are supported:

• Use cases diagrams, used to express functionality of a given system or subsystem,

together with external entities (called actors) that either expect particular

functionality or contribute to it.

• Class diagrams, used to model the structure of a system under design. Those

diagrams constitute the central element of practically every design (including even

business modeling), thus it is not surprising that this part of the language has been

most precisely described. The assumed semantics of classes is strongly inspired by

www.manaraa.com

– 16 –

Java and C++ language solutions. While this solution makes the UML well prepared

for creating detailed design of software written with those languages, at the same

time it may be perceived as a factor limiting a conceptual modeling as well as a

design for less common implementation platforms.

• Interaction diagrams exist in two forms: sequence diagrams and collaboration

diagrams, both intended to show (from different viewpoints), how systems behavior

is realized in terms of object interactions.

• State diagrams allow modeling a behavior of an object of a given class or of a

whole system from the point of view of the lifecycle of such object or system.

• Activity diagrams that so far seem to be rather loosely connected with the rest of

underlying model, serve as a general mean of visual description of e.g. method’s

algorithm or a business process.

• Component and deployment diagrams allow to illustrate appropriately the structure

of implemented software and its target location within the physical deployment

configuration.

Moreover, to specify additional constraints not expressible by standard graphical

notation elements, a precise declarative (and state-preserving) constraint language

named OCL (Object Constraint Language) has been introduced.

As it became clear, it is practically impossible to foresee and define all constructs

and properties that could be required for such a wide area of application, the special

language extensibility features have been defined. Thus the UML metamodel provides

three kinds of supporting features that can be used to extend the metamodel:

• Constraints allow to specify additional conditions, which could not be covered by

applying standard constructs (e.g. available in UML class diagrams).

• Tagged values are the tag-value pairs that can be added to a model element to

provide additional information (e.g. author, version etc.).

• Stereotypes are in fact the only element kind capable to extend the predefined

metamodel. Stereotype is a mean of meta-classification, and in its simplest form it

just marks a given instance of the metamodel element, e.g. class (stereotype

definition requires specifying exactly one metamodel element as its base) to which

www.manaraa.com

– 17 –

(including its descendants) a given stereotype is applicable. In its more sophisticated

forms stereotype may extend metadata connected with a given element, by declaring

tag values, that become effectively additional attributes describing model element.

Similarly, the stereotype definition may contain constraints that would be imposed

on every instance of a metamodel element the given stereotype is assigned to.

Stereotypes defined to support particular problem domain (e.g. software-

development methodology or detailed design for particular implementation platform)

may be provided as UML profiles, defined outside of the language’s specification. The

concept is rather controversial, as it is defined in the UML metamodel together with the

notions the stereotypes’ instances are supposed to extend/redefine. Thus every particular

instance of stereotype appears one meta-level lower than the notion it redefines.

Anyway, the presence of the notion clearly indicates the need to provide means for

lightweight extensions of standardized metamodels.

From the point of view of this work, the UML is especially interesting as the

source of the most popular object-oriented metamodel, which provides quite a useful

and expressive (although informal) definition of the meaning of the introduced language

constructs. It is doubtful as to whether such a metamodel is a full description of UML

semantics. This definitional style suffers from the ignotum per ignotum logical flaw

(concepts are defined through undefined concepts; definitions have cycles but they are

not recursive). The metamodel bears informal semantics through commonly understood

natural language tokens and a semi-formal language. The formal data semantics of class

diagrams can be expressed through a definition of the set of valid data (database) states

and by mapping every UML class schema into a subset of the states [53]. Semantics of

method specifications requires other formal approaches, e.g. the denotational model.

Such a formal approach would radically reduce ambiguities concerning UML; however,

due to the rich structure and variety of UML diagrams, the formal semantics presents a

hard problem. Instead of using formal semantics, the UML metamodel presents an

abstract syntax of data description statements, and various dependencies and constraints

among introduced concepts.

Apart from its descriptive role, the UML metamodel allows for definition and

verification of consistency rules among the abovementioned different views of a

modeled system. It also serves as a base for definition a metadata interchange format,

www.manaraa.com

– 18 –

which is already standardized as a XML-based solution named XMI (XML Metadata

Interchange) [42].

Element

ModelElement

Feature Namespace GeneralizableElement

ElementOwnership

Parameter

Classifier

BehavioralFeature

Constraint

StructuralFeature

Attribute
Operation Method

body : ProcedureExpression

defaultValue : Expression
kind : ParameterDirectionKind

*

constrainedElement {ordered}

name : Name

ownerScop e : ScopeKind
visibility : VisibilityKind

visibility : VisibilityKind
isSpecification : Boolean

0..1

*

namespace

isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean

feature {ordered}*

1..*

ownedElement

body : BooleanExpression

constraint

*

* p arameter {ordered}

isQuery : Boolean

concurrency : CallConcurrencyKind
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean
specification : String

specification

multip licity : Multiplicity
changeability : ChangeableKind
targetScope : ScopeKind

*

type1

owner

0..1 1

1

type

initialValue : Expression
*1

Fig. 1. A fragment (ca 20%) of UML metamodel, including the core language elements

The UML metamodel is fairly large, which is not a surprise concerning the

multitude of different views supported by this language. Moreover, additional

complexity results from the attempt to make the definition highly generic. Note for

www.manaraa.com

– 19 –

example, that the Class concept, being a direct specialization of Classifier (shown in

Fig. 1), has a hierarchy of four more general notions above it (that is, Classifier,

Generalizable Element, Model Element and Element) and many of its properties are

defined by them. Since a number of such features seem to be defined rather too high,

the combinations of allowed properties need to be restricted in the subclasses, leading to

extensive usage of additional constraints (formulated in OCL).

2.3 Meta Object Facility

Meta Object Facility (MOF) is an OMG specification, which “defines an abstract

language and a framework for specifying, constructing, and managing technology

neutral metamodels” [39]. It is thus intended to provide a common base in term of

which other metamodels like UML, IDL, CWM and others (not necessarily limited to

OMG standards) could be uniformly described. The effort is not limited to just a

common conceptual base for meta-modeling, as the definition provides also a

framework to implement arbitrary metadata repositories.

To achieve this, another, higher meta-level was necessary, which led to

application of the common four-layer approach to meta-modeling. Fig. 2, based on

similar schema in [39], illustrates resulting metalevel hierarchy.

Traditionally, a developer is able to define the model layer (M1 level in Fig. 2) for

a given problem domain, to determine the structure, constraints and behavior of a data

(M0) to be stored in considered system. Four-layer metadata architecture provides the

additional flexibility, by allowing to define metamodel (M2) elements to be used during

modeling. Metamodels are defined using constructs of meta-metamodel (M3), which

constitutes an immutable definition defined by such modeling framework and hardwired

into a code of tools that support it.

www.manaraa.com

– 20 –

M3

name

Employee

name = "Smith"

e1 : Employee

«instance»

className

«metaclass»
Class

attrName

«metaclass»
Attribute

«instance»

«instance»

name

«meta-metamodelClass»
Metaclass

«instance» «instance»

meta-metamodel

metamodel

model

information

M2

M1

M0

Fig. 2. Illustration of the four-layer metadata architecture (based on fig. 2-1 from [39])

The MOF defines an object-oriented modeling framework, which was

intentionally made very similar to the UML metamodel. It is based of four main

modeling concepts [39]:

• Classes, which can be used to define metaobjects;

• Associations, limited to binary ones, to model relationships between metaobjects;

• Datatypes, to model other data (including primitive types);

• Packages, to modularize the models.

Moreover, similarly like in the UML, the constraint notion exists. However, the

standard does not prescribe any particular constraint definition language, nor it defines

the mechanisms or scenarios to enforce them.

Of course, compared to UML, the MOF metamodel is significantly simplified for

at least two reasons. Firstly, as it is limited to structural notions and secondly, because

of the intent to directly implement those modeling constructs, which would be

impractical in case of sophisticated concepts like e.g. n-ary associations. To realize it,

the specification defines a standard mapping between models created using MOF

www.manaraa.com

– 21 –

constructs and implementation platform like e.g. CORBA IDL interfaces (optionally

also accompanied by a generated repository server code).

In other words, using standard constructs of MOF (M3) one can generate

interfaces (M2) to manipulate metadata (M1) on a given platform. It is of course

possible to use the framework analogously at the lower level, to deal with regular data

(M0), but the intended usage is the development of metamodels to build a universal

repository (instead of using the MOF as a ultimate modeling language).

The genericity of the specification is additionally strengthened by the reflective

interfaces, allowing for proper interpretation of metadata without previous static

knowledge of its metamodel.

The following features of the four-layer architecture are suggested within the

specification as making it advantageous:

• Openness; that is, ability to support any possible modeling paradigm;

• Possibility to explicitly define relationships (or mappings) between different kinds

of metadata;

• Incremental addition of new metamodels or their elements is possible;

• The common meta-metamodel constitutes a base that allows to interchange different

models and metamodels between parties.

The issues like model-to-model transformation mechanisms or a specification of

modeling notations for metamodels developed with the MOF are expected to be

addressed in future versions of the specification.

Two related specifications establish very important connections between the MOF

and other standards or tools dealing with metadata. The first of them is the UML profile

for MOF (part of EDOC specification [37]), providing a standard way of visual design

of metamodels defined in terms of MOF constructs. The mapping is two-way, thus it

also allows to view the MOF-compliant models with UML. In particular, following

those specifications can provide a commonly understood base for formulating proposals

of different metamodel specifications.8 The second of mentioned specifications, even

8 Indeed, the most of conceptual diagrams presented in the following parts of this work as UML class
diagrams can be considered to be MOF-compliant.

www.manaraa.com

– 22 –

more important, is the XMI specification, which describes a standard way of expressing

MOF-compliant metamodels and metadata in the W3C’s XML [62] format. This

provides a widely-accepted format for the interchange of different types of metadata e.g.

among modeling tools (thanks to the fact that UML metamodel is also defined in terms

of the MOF) or different type of data repositories or data-analysis tools.

2.4 Common Warehouse Metamodel

The OMG CWM (Common Warehouse Metamodel) [36] standard addresses the

issue of metadata interchange in the area of data warehousing. It provides a metamodel

definition specialized for this problem domain, although being independent on any

specific data warehousing implementation. With a wide scope assumed by the

specification (description of a whole data warehouse system) it is intended to establish

generic data warehouse architecture [36].

The base of this specification is the Object Model, which has been created as a

subset of the UML metamodel. Thus all the standards discussed so far share the same

object model as a base for additional metamodel elements, specific for the application

domain of a given standard. Another package, named Foundations, provides the rest of

basic metamodel elements, which in contrast to the Object Model package are specific

to the data warehousing domain. It consists of concepts describing business information

(parties, locations, contacts, documents etc.), datatypes (extending those covered by the

Object Model), expression representation, base concepts for indexing the data, software

deployment (sites, machines, components etc.) and mapping between data types (from

different systems).

Additional packages, based on the abovementioned ones, concern among others

the following issues:

• Data resources (with support for different data models used to store them, like

record, relational, object-oriented and others);

• Data analysis (including data transformation and visualization, OLAP, data mining).

• Warehouse management, including description of operations performed on data

warehouse system.

www.manaraa.com

– 23 –

The details of the standard are irrelevant to this work. However, it is outlined here

as an example of a domain-specific metamodel definition, based on the standard OMG’s

modeling framework. Technically, the integration with UML and MOF is achieved by

defining the CWM in terms of MOF meta-metamodel. Particularly, this allows to apply

the XMI mapping to a warehouse description, which allows for [36]:

• Transformation of the CWM metamodel into XML’s Document Type Definition

DTD;

• Transferring warehouse metadata in the form of XML documents conforming to the

abovementioned DTD;

• Providing the CWM metamodel itself in a form of a XML document (based on DTD

defined by the MOF standard) in order to use it in generic MOF-compliant

repositories.

2.5 Model Driven Architecture

The most recent significant initiative of the OMG, named Model Driven

Architecture (MDA) [38], takes advantage from the strong integration among

abovementioned standards. It is intended to support rising a level of abstraction used in

software development and integration. More precisely, it provides a UML-based

modeling framework assuming a clean separation between business logic model and the

design elements dependent on infrastructure (programming languages, middleware etc.)

selected to deploy it. This is motivated both by the need to manage the complexity of

system’s specification, as well as by the observation that an enterprise has to deal with a

number of different deployment platforms, which additionally (in a longer perspective)

are definitely a subject of change. Moreover, a very popular postulate of reuse, raised

here to the level of conceptual model instead of implementational artifacts, also comes

into play.

The specification distinguishes the following main levels of abstraction:

• Computation-independent business model (also called a domain model);

• Platform Independent software Model (PIM);

• Platform Specific software Model (PSM);

www.manaraa.com

– 24 –

• Implementation.

Although analogous mappings exist between all those levels, the specification is

focused on PIM and PSM, which are the most important for the development effort and

at the same time precise enough to consider support for their automatic mappings.

The most important concept used by the MDA is the cross-model refinement

correspondence that holds between a more abstract base model and another model of the

same system, which adds details determined by a design decision or perhaps predefined

mapping (called refinement pattern). A transformation of different nature occurs during

zooming-in or zooming-out, which means changing the granularity of details presented

by a model. This mechanism is related with the model packages composition. A yet

another concept that explains differences between models is a viewpoint, specifying an

abstraction criteria according to which a given model is built. A viewpoint

correspondence holds between two models created according to the same viewpoint,

which is necessary to determine e.g. when specifying two systems to be integrated.

The above overview may lead to the question, if the MDA is not just a kind of

methodology, promoting design and integration good practices and depending on the

UML and related specifications. In fact, a more distinct contribution of MDA may be

expected from specializing existing modeling framework towards support of specific

PIMs and PSMs. Particularly, this would mean:

• UML profiles for PIMs. At this level the number of necessary profiles is assumed to

be very small, as they need to indicate only a general domain of developed system

(e.g. enterprise computing, real-time or other) in a platform independent fashion.

• So-called pervasive services definitions. Those are specifications of the most

important services required by a distributed object environment (of course inspired

by CORBA’s Common Object Services specifications), defined on a higher level of

abstraction to make them platform-independent. The specifications of pervasive

services will need to be backed by platform-specific definitions for all of the

middleware platforms supported by the standard [38].

• UML profiles for PSMs. Those would define (through stereotyping of appropriate

UML modeling notions) the constructs available in particular implementation tool

www.manaraa.com

– 25 –

or platform. For example, the profile for CORBA’s PSM may stereotype the UML’s

class concept to distinguish its IDL constructs like interface, valuetype, struct etc.

• PIM to PSM mapping patterns or guidelines. Whenever it is feasible, the transition

from PIM to PSM should be supported by standard mapping, allowing to automatize

such development step. If a PIM is not precise enough to determine optimum

mapping, the annotations9 accompanying such PIM may be taken into account. If

there is still a number of possible choices, guidelines or patterns referencing a given

mapping case may support developer in manual choice of an optimum solution.

• PSM to PIM mappings to support reverse engineering.

Making the last two of mentioned specification elements precise enough to be a

subject of tool support may be feasible only in a limited scope. On one hand a rich

repertoire of implementation constructs may be available for a given PSM. On the other

hand, the modeling language of PIM may be too limited. For example current UML

version allows for pretty precise specification of structural aspects, thus making it

possible to map this aspect of specification into a PSM. However the lack of adequate

UML description of behavioral semantics is a limiting factor, whose removal would be

very important for future evolution of the language [20]. The MDA may also require the

UML to improve its ability to describe the refinement relationships as well as the zoom-

in and zoom-out model capabilities.

2.6 ODMG

The Object Data Management Group (ODMG) was created in the 1991 by a

number of the OMG member companies, together representing almost the entire object-

oriented database systems’ industry. The aim was to strengthen the market position of

ODBMSs, by establishing a set of de-facto standards, allowing for the portability of

database applications between different ODBMSs. Within the next ten years, the

ODMG issued four versions of object-oriented database standard, which, comparing to

its relational database counterpart, the SQL, failed to gain a significant popularity, at

least it the commercial world.

9 Annotations are assumed to be platform independent. An example of important information brought by
annotation, provided in [38] is the distinction of conceptual-model classes into describing an entity or a
process.

www.manaraa.com

– 26 –

As explicitly stated, the main assumption of the standard was to borrow as much

as possible from existing specifications, namely the OMG CORBA and SQL, and to

align its definition with the properties of existing products. This led to an architecture

characterized by the following design decisions:

• A database is provided as a persistence feature added to a general-purpose object-

oriented programming language, which plays a role of database’s data manipulation

language and uses standardized API to explicitly invoke DBMS’s operations.

• The assumed object model is programming language-independent, although closely

follows the common elements from object models of the supported languages. The

most recent version of the ODMG standard supports C++, Smalltalk and Java,

defining appropriate APIs and language mappings from the abstract Object Model.

The way of manipulating objects is language specific. E.g. in Java language,

persistence through reachibility and garbage-collection concerning database objects

are assumed.

• Database schema can be defined using Object Definition Language (ODL), defined

as a superset of the CORBA’s IDL. The most important enhancements concern

bidirectional, integrity-maintaining binary relationships between objects and

collections (set, bag, list and map), being the primary mean to organize database’s

data structure.

• Database does not store objects’ behavior. It can be specified only by methods in

applications’ code, and is performed exclusively on the client’s side. This kind of

architecture is usually called a passive server.

• The syntax of the standard’s query language, named OQL (Object Query Language)

is inspired by SQL, although the similarities are rather superficial (especially,

considering the notion of object’s identity). In contrast to the SQL, the OQL lacks

imperative constructs, although it allows data manipulation through invoking

methods (which may have side effect), by selecting them within the “select” clause.

Since the features of the OQL make it insufficient for writing complete applications,

the OQL statements (similarly like in case of SQL) are supposed to be embedded

within a programming language code. In effect the so called “impedance mismatch”

problem of embedded SQL occurs also in case of the OQL.

www.manaraa.com

– 27 –

Taking into account the strong connection between database and programming

language, the complexity of the OQL and ambiguities of its definition, the role of the

query language in the above architecture unfortunately becomes rather secondary,

which is confirmed by a very limited support for the OQL provided by commercial

ODBMS. This may be perceived as a step backwards compared to relational databases,

since using solely programming language to manipulate database objects is a low-level

and not a very productive approach. This seems to be the most serious and fundamental

source of controversy around the ODMG specification. Another reason is a generally

low technical quality of the specification, which is exemplified e.g. by issues discussed

in the next chapter.

The ODMG metamodel, is defined through a collection of ODL interfaces, which

are intended to provide access to an ODBMS schema repository, organized analogously

to CORBA’s Interface Repository, which has been the pattern for this definition. As can

be seen from the fragment presented in Fig. 3, the structure of the metamodel is very

complex, and despite the total number of interfaces (31) is smaller compared to the

latest version of Interface Repository specification [35], its usage seem to be even more

complicated. The ODMG metamodel specification still seems to be immature, and the

consequences of providing some of its features (e.g. metadata-updating operations) have

not been addressed so far. This is additionally confirmed by the fact that e.g. the latest

ODMG Java binding specification has not accommodated those interfaces at all, while

the C++ binding supports them only in their read-only part.

Since the ODMG standard metamodel remains the most relevant specification to

the topic of this work, some of its issues will be further discussed in the following

chapters.

Since the publication (in 2000) of version 3.0 of the specification [34], the

standard seems to be stagnant. Currently, the only actively developed and implemented

sub-area of that standard concerns support for Java language and took the form of the

Java Data Objects (JDO) specification, influenced in some extent by the ODMG Java

binding.

www.manaraa.com

– 28 –

Property

RepositoryObject

absoluteName():ScopedName

accept_visitor(In a_repository_object_visitor:RepositoryObjectVisitor)

meta_kind : MetaKind

parent():Scope

MetaObject
name : string
comment : string

Constant

value():Object

Type
type

1

constants

*

Union

*

1

properties

type

*

1

unions

switch_type

PrimitiveType

primitive_kind : PrimitiveKind

TypeDefinition Collection
collection_kind: CollectionKind

is_ordered(): boolean
bound(): unsigned long

Interface

add_operation(In op_name:string, In op_result:Type,
 In Parameter [*] ParameterSpec{struct}, In raises [*] Exception): Operation

add_attribute(In attr_name:string ,In attr_type:Type):Attribute
add_relationship(In rel_name:string ,In rel_traversal:Relationship): Relationship

remove_attribute(In object: Attribute)
remove_relationship(In object: Relationship)
remove_operation(In object: Operation)

inherits

*

derives
*

Class
extents [*] : string
keys [*] : string

extender

*
extensions

0..1

Operand

Enumeration

ConstOperand

elements

enumeration

*

1

referenced_by

*
*
references

value_of0..1

1
the_value

max_size

size_of
0..1

1

1alias

type_defs * collections

sub_type1

*

Fig. 3. A segment (ca.25%) of the ODMG metamodel

The JDO [27], being maintained by Sun Microsystems Inc., is intended to provide

a uniform programmer’s interface to manipulate persistent objects from different data

sources, treating them as common Java objects. The scope of this standard is much

more modest compared to the ODMG, which is reflected e.g. in the lack of a query

language specification. In this area, the standard provides only an interface named

Query, which allows for simple extent or collection filtering, based on predicates

defined over its objects’ state. The queries can be paremetrized, but on the other hand,

do not support using method calls in the predicate body.

The JDO does not define special support for metadata management. Its features in

this area are almost identical to regular Java’s reflection mechanism, and are provided

through a special interface, allowing to avoid using reflection during runtime.

www.manaraa.com

– 29 –

2.7 The OASIS project

The aim of the OASIS (ODMG Architectures for the Specification of

Interoperable Systems) project [46] was the construction of a federated healthcare

system, based on the ODMG as a canonical data model. This kind of application is

especially interesting because of the need to integrate heterogeneous data sources,

which depends heavily on accessing and manipulation of metadata. The resulting

publications provide a number of interesting remarks on the required features of

ODBMS architecture in general and its metadata-related features in particular. It is

worth to mention the following issues:

• The approach used to integrate systems into a federation extensively used a view

mechanism to define data sources in the form suitable for exporting from local

systems as well as to integrate them into a federated schema. This requires a

powerful view mechanism, including appropriate metamodel constructs, since the

virtual classes (including inheritance graphs), attributes and relationships created by

a view definition need to be explicitly represented in a schema repository in a way

analogous to metadata of a base schema.

• An integration of distributed databases makes the passive sever architecture,

prohibiting the behavior sharing, inappropriate for several reasons. Firstly, it

jeopardizes consistency, since there may be a number of implementations realizing

logically the same behavior on the same data. Secondly, if the behavior resides only

on the client’s side, the federated view definition cannot access it, thus it has to be

limited to dealing with static objects’ properties only. Thirdly, in case of multimedia

object extraction, inability to select the searched fragment (e.g. a scene in a long

video sequence) on the server side may result in a big data transfer overhead [28].

Another drawback of the ODMG specification discovered in the context of a

federated system construction was the lack of standardized event notification

mechanism, essential for propagating updates throughout the federation.

• The integration of heterogeneous databases (mapped for this need into a chosen

canonical data model) requires extracting the metadata that describe the

organization of provided resources. Experience showed that despite standardization

www.manaraa.com

– 30 –

of API, the portability of generic applications using reflection mechanism among

different DBMS is not possible with the current level of specification [47].

2.8 Metalevel architecture in programming languages

A large amount of research concerning metalevel architecture comes from the

programming languages domain. The most popular topic from this area is a reflection

mechanism, whose understanding may differ between database and programming

languages communities. In the former case, the main concern is the ability to extract

database metadata in order to make it manipulable by generic applications, the latter

focuses on behavioral reflection, including the ability to dynamically modify the

program being currently executed. The major contribution of metalevel architectures is

support for the postulate of separation of concerns in software development (credited to

Dijkstra [12]). Two approaches to this issue are briefly presented below.

The Aspect Oriented Programming (AOP) [30] has recently gained a significant

popularity as a programming paradigm improving the ability of traditional languages to

deal with so-called crosscutting concerns. As the name suggests, those are the required

features of software, which are difficult or impossible to modularize using classes,

methods or procedures. They are often related with various kinds of non-functional

requirements, like e.g. persistence, security, synchronization, real-time constraints or

monitoring, whose implementation is usually scattered among different fragments of

code, which makes it less readable and complicates its maintenance. The solution

offered by the AOP is an abstraction called aspect, used to modularize a given concern

in a way that does not affect the base code.

This provides a kind of additional design “dimension”, which becomes integrated

into the application during the compilation phase, by a mechanism called aspect

weaver.

For example, the well known Java-based implementation of the AOP paradigm,

called AspectJ [2], provides two general kinds of extending mechanisms:

• Behavior modification using advices. The term pointcut denotes a declaration that

identifies a family of precisely defined points in the execution of a program, which

are called join points. AspectJ supports identification of join points of several kinds,

www.manaraa.com

– 31 –

including method call or execution, access to an attribute, and invocation of a

constructor or exception handler. Those elements can be identified by their name (or

its part), their location in terms of Java’s classes and packages, as well as by

signatures (that is, types of attributes or methods’ parameters). Join point definition

can be made more specific by combining several simple pointcuts using logical

operators. Advice can provide arbitrary behavior to be executed before, after or even

instead of execution points defined by a given pointcut it is assigned to.10 Additional

flexibility is provided by a reflective interface, allowing to extract a context of

particular join point from within the advice code.

• Class structure modification using introduction. This mechanism allows for

modifying definition of a given class, both in terms of behavior (new or overridden

methods) as well as the structure (additional attributes). This includes possibility to

modify inheritance hierarchy by making existing class extend other class or

implement certain interface. All these changes can be achieved by declarations

located outside the considered class.

Another approach to the separation of concerns problem is providing metaclasses

as a mechanism fully definable by a programmer. In [14] the role of metaclasses is

described through the analogy to natural language elements: if a class corresponds to a

noun, then a metaclass can be compared to an adjective, as it provides certain properties

(like e.g. thread-safe or persistent) further specifying a class definition. When a class is

declared as an instance of certain metaclass, it gains its properties analogously like an

object, whose behavior and internal structure is defined by its (regular) class. Similarly

like in case of the AOP, it allows to decompose the problem according to different

criteria (as every class can be an instance of multiple metaclasses) and to guarantee

certain level of mutual independence if their redefinition. However, this approach may

be lead to potentially very sophisticated structures of metaclass definitions, which may

make the whole idea too complicated for a broader audience.

Since this work is focused rather on structural dimension of metadata, the

majority of topics outlined in this section remain of little relevance to the subject.

10 Of course, this may affect the consistency of original code. Note however, that the construct is much
more controllable than e.g. the infamous goto statement, as the control is assumed to return to the original
join point.

www.manaraa.com

– 32 –

However, the issue of separation of concerns using metamodel constructs will be briefly

discussed in further chapters.

2.9 XML Schema and the Resource Description Framework
(RDF)

The World Wide Web Consortium (W3C) is a widely recognized organization

involved in specifying common protocols for interoperability of web resources and

services. The today’s most popular specification of this consortium is the eXtensible

Markup Language (XML), proposed to make web contents more meaningful, by

introducing a logical structure through a use of HTML-like tags. Thanks to its

extensibility and platform-independence, it also became an attractive option for porting

a data between heterogeneous repositories. The XML is a base for a number of related

technologies, concerned e.g. with visualization of contents, building links and

relationships between XML entities, or defining the required structure of a XML

document.

The last of mentioned issues is addressed by the XML Schema [63] specification.

It introduces a concept of type, which may be a simple type or a complex type, where

the latter describes a structure instead of a simple value. A type, once defined, may exist

within a structure under a number of different fields. Field definitions may be described

by multiplicities and default values. An unconstrained, predefined “Any” type is

available. Based on existing type definitions, new, derived types can be defined, either

through restriction of their values’ domain or through extension, which means

extending a complex type with a new element. Lists and unions based on simple types

can be defined; for complex types union-like choice groups are available. Types can be

defined abstract. A substitutability concerning derived types holds.

As a result of the XML design assumptions, the XML Schema does not deal with

behavioral elements (like operations) nor with relationships (which are subject of

separate XML-related specifications).

As can be seen from the above overview, the XML Schema is limited to imposing

structural validity constraints on XML documents. Thus it leaves untouched the issue of

providing semantic description of Web-based resources. This is the role of the Resource

www.manaraa.com

– 33 –

Description Framework (RDF) specification, which is intended to provide a general

mean to provide arbitrary descriptive information about web-based resources.

A resource, being a subject of RDF description is assumed to be uniquely

identified by a Uniform Resource Identifier (URI), which may be constructed using

URL. Resource descriptions are described through a graph structure, namely a directed,

edge-labeled graph, where each described resource, called in this context subject, has a

certain number of related named properties with their values. The part identifying such

property is called predicate and has connected a value, which is called object. Since

some objects may be subjects of further descriptions, the resulting graph may be

arbitrarily complex. Since objects can be either simple values (e.g. strings), or related

resources, the described mechanism effectively supports both resources’ properties and

relationships between resources [60].

Alternatively to a graph representation, a XML standard format for storing the

RDF descriptions has been defined. It assumes storing each subject-predicate-object

graph arc as a triple of XML statements, containing appropriate values and identifiers.11

Taking into account that the RDF is focused on resource’s semantics instead of

describing constraints on its structure and because the assumed resource-identification

systems allows to deal with any describable entities (not just web documents), it can be

treated as a lightweight ontology system to support the exchange of knowledge on the

Web [21].

A prominent example of early application of the RDF is the Dublin Core

Metadata Element Set (DC), specified by the Dublin Core Metadata Initiative

organization. Although both specifications were developed independently, some

requirements discovered when formulating the DC were taken into account in the RDF

development [11].

The DC provides a very general collection of properties, which is intended to be

applicable to a very broad range of application domains. It consists of the following 15

descriptive elements [11]:

• Title: A name given to the resource, by which the resource is formally known.

11 To prevent ambiguity, also predicates can have their URIs assigned.

www.manaraa.com

– 34 –

• Creator: E.g. a person, an organization, or a service, indicating the entity

responsible.

• Subject and Keywords: The topic of the content of the resource. Using a controlled

vocabulary or formal classification scheme is recommended.

• Publisher: An entity responsible for making the resource available.

• Contributor: An entity responsible for making contributions to the content of the

resource.

• Date - associated with an event in the life cycle of the resource (it is usually the

creation date).

• Type: The nature or genre of the content of the resource. Choosing a value from a

controlled vocabulary is recommended.

• Format: Describes the physical or digital manifestation of the resource.

• Identifier: An unambiguous reference to the resource within a given context. Using

a formal identification system like e.g. URI, DOI (Digital Object Identifier) or ISBN

is recommended.

• Source: A Reference to a resource from which the present resource is derived.

• Language: A language of the intellectual content of the resource.

• Relation: A reference to a related resource.

• Coverage: The extent or scope of the content of the resource, in terms of place

name, spatial location, temporal period of jurisdiction.

• Rights: Information about rights held in and over the resource.

As can be seen from the above example, the understanding of a term “metadata”

differs significantly between the web content management and database communities.

In the area of web resource description it tends to be a very broad term covering all

related data not shown explicitly within a regular document. The database and UML

community focuses on data element’s invariants and a description of the context that

manipulates or accesses that data. The majority of DC’s properties would be applicable

to particular data element (e.g. database object) rather than to a family of elements as it

is typically the case for database metadata (e.g. interface, type, collection).

www.manaraa.com

– 35 –

Nevertheless, a number of properties required for the content management are

applicable to database metadata and thus may require metadata structure openness to

accommodate new descriptive elements.

Although web resources tend to be less structured in comparison with traditional

database management, RDF developers found it necessary to define, what descriptions

(that is, properties) are expected for particular types of entities and perhaps also – what

would be the types of their values. The resulting specification – the RDF Schema, is

described as a vocabulary description language, defining classes and properties that can

be used to describe other classes and properties [61].

rdf::property

name

rdfs::resource

name

rdfs::class

rdfs::subClassOf

* rdf::type

*

rdfs::SubPropertyOf

*

«instance»

«instance»

rdfs::range*

rdfs::domain *

«instance»

Fig. 4. RDF Schema concepts depicted using UML class diagram

The diagram in Fig. 4 is an attempt to show relationships among RDF Schema

concepts. Since RDF descriptions constitute a kind of metadata, this directly

corresponds to a metamodel concept discussed in previous sections. A class specifies a

type of a given resource and determines which properties have been defined to describe

it and what would be in turn the type of such description (through the range

relationship). Moreover classes and properties can form generalization-specialization

hierarchies, for which substitutability holds (as described in the context of XML

Schema). The only element of this simple diagram that may be found disturbing is the

existence of the «instance» dependencies suggesting, that the model mixes two

metalevels (range, type, subClassOf and subPropertyOf are all instances of the

www.manaraa.com

– 36 –

property). In fact however, similar solution exists e.g. for the UML and the MOF,

whose metamodels are defined in terms of their own core concepts, but it simply does

not have to be explicitly shown in their metamodel diagrams as it is implied by the

UML notation.

2.10 Objectivity/DB

The Objectivity/DB is a good example of a mature commercial ODBMS

developed by an ODMG-member company. The system supports all three programming

languages considered by the ODMG (C++, Smalltalk and Java) and its language

bindings retain a relatively high level of compliance with the standard, although rather

insufficient to guarantee a source code portability. Objectivity/DB does not support the

OQL language at all, which is quite common among today’s commercial ODBMSs.

Instead, it provides only instance- filtering capability similar to the one specified by the

JDO Query interface mentioned earlier.12

The following properties of Objectivity/DB are associated with its ODMG

compliance:

• Lack of stored procedures. The drawbacks of this assumption have already been

enumerated. The advantage is the ability to ultimately decentralize the processing

(practically the only centralized feature remains transaction/locking control).

• Usage of the data model of underlying object-oriented programming languages.

The absence of the OQL, makes a programming language the only mean to access

database objects. The access is quite seamless, although at the same time rather low-

level due to almost complete lack of declarative constructs.

• Lack of object relativism. Objects can only contain primitive members (not being

objects) and object references. Therefore, although database can store structures of

arbitrary complexity and nesting level, their implementational structure is quite flat.

That is, the only real composition relation holds between objects and their attributes

and among DBMS-defined storage objects. Except the composition hierarchy

elements shown in Fig. 5, there is no other composite objects. This also entails

inconveniences known from Java itself: the need of special treatment (also when

12 It is even more limited than the JDO’s solution due to the lack of support for query parameters and
constraints over the attributes of type Date.

www.manaraa.com

– 37 –

using reflection) and limitations connected with primitive types, make this

“contamination” of object-oriented model rather unpopular [1].

On the other hand, in contrast to the ODMG definition, Objectivity/DB does not

deal with the concept of extent. Instead, a persistence-capable object may be placed in

any container, and each container may store instances of different classes. In effect,

class definition is completely separated from storage structures. To better organize

storage of very large amounts of data, the ODMG’s concept of Database has been

replaced by three levels of storage objects, as shown in Fig. 5. Moreover, some issues

not addressed by the ODMG standard, like e.g. security mechanisms or event

notification, has been designed for Objectivity/DB as services external to the core

DBMS.

*

*

*

Federated
database

Database

Container

Persistent
object

Stores global schema;
Subject of administrative operations.

Corresponds to a single disk file;
A unit of distribution.

A unit of concurrency control
(locks are container-level).

An instance of
persistence-capable class

*
Persistent
attribute

Primitive value, character string,
or a reference to a pesistent object

Fig. 5. The containment hierarchy of the Objectivity/DB data structures

The system maintains database metadata internally. The ability to access or

manipulate it differs significantly among programming language bindings. For C++ a

special facility called Active Schema is offered as a separate product. Its interfaces,

partly compliant with ODMG metamodel specification, allow for examining the schema

www.manaraa.com

– 38 –

and evolving it. It is also possible to browse and modify persistent objects through

Active Schema, with absence of their class’ implementation. The schema change history

is maintained, but solely for the need of deferred object conversion in result of a schema

evolution.

In case of the Java binding, the situation is completely different. The Java’s

reflective capability allows for isolating the schema from developer and for performing

all its updates implicitly. That is, class is registered into a schema at the first time where

the DBMS deals with persistent instances of such class or of classes whose definition

refers to it (although classes can be also registered explicitly in advance). Despite the

lack of Java interface to Objectivity/DB schema, some information can be extracted

using standard Java’s reflective API. This solution is limited though, since it requires

presence of appropriate instances within database, as well as the access to the valid

version of implementation of the classes registered in the schema. This is also a case for

some of recently developed lightweight Java-based ODBMS (see eg. [10]).

Note also, that even in case of C++ interfaces, allowing access and updating of the

schema definition, the schema structure is fixed and does not allow for any custom

extensions of the underlying metamodel.

www.manaraa.com

– 39 –

3 The concerns of DBMS metamodel

In this chapter the major issues related to the construction of the metamodel for

object databases are presented. As will be shown, none of the currently available

solutions (in particular, the ODMG standard), address all this issues in a satisfactory

degree. A database metamodel should fulfill the following main roles:

• Data Model Description. The metamodel definition should be presented in a form

that support understanding of the introduced data model by all parties, including

system developers, users, administrators, researchers and students. It specifies

interdependencies among concepts used to build the model, some constraints, and

abstract syntax of data description statements; thus it supports the intended usage of

the model.

• Implementation of DBMS. A metamodel determines the organization of a

metabase (usually referred to as a system catalog in relational databases or a schema

repository in object-oriented databases). It is internally implemented as a basis for

database operations, including database administration and various purposes of

internal optimization, data access and security.

• Generic programming. The metamodel together with appropriate access functions

become a part of the programmer’s interface to enable generic programming

through reflection, similarly to Dynamic SQL or CORBA Dynamic Invocation

Interface.

• Schema evolution. A metamodel equipped with data manipulation facilities on

metadata supports schema evolution. As will be shown, this requirement is often not

well understood. Changes to a schema imply a significant cost in changes to

applications acting on the database. Thus schema evolution cannot be separated

from software change and configuration management.

• Separation of concerns at the metadata level. Allowing the developer to modify

the system behavior related with particular metadata, realized e.g. in the spirit of

Aspect-Oriented Programming (AOP), seems to be very promising for the DBMS

flexibility and its ability to deal with non-functional requirements. The metamodel

definition should take into account the properties needed by such extensions.

www.manaraa.com

– 40 –

• Formal description of local resources (called ontology) in distributed/federated

databases or agent-based systems. A metamodel informs external parties (for

example, mobile agents) on the content and organization of local resources.

Recently this aspect has received special attention, reflected e.g. by the RDF

standard of W3C [60] described in the previous chapter.

As will be demonstrated, these metamodel goals are contradictory to some extent.

The following sections present peculiarities and requirements connected with each of

the aforementioned goals. In the context of these issues the serious drawbacks of the

ODMG standard metamodel proposal are identified. This will lead to general

conclusion that the ODMG metamodel specification needs significant improvements.

3.1 Data model description

This role of metamodel is central in case of modeling language. However, also for

an ODBMS metamodel it is of primary importance, especially because the clarity and

understandability of new technology is critical for the success of its adaptation. This

role of metamodel definition is also the most straightforward and intuitive. The usability

of other metamodel features is dependent on the quality of this definition. Thus the clear

description of data model primitives and their interrelations is necessary.

The UML [41] is an example of addressing that aspect of metamodel. This case

shows that even without resorting to formal definitions it is possible to satisfactorily

describe the meaning and the intended usage of data model notions. Graphical notation,

together with a number of examples and natural language descriptions keep the number

of ambiguities low. Taking into account that in case of database system metamodel

constructs are connected with implementational structures and clarified by the query

language semantics, the similar style of description would be satisfactory for DBMS

metamodel. However, the fact that such metamodel need to be directly implemented

speaks in favor of employing a much simpler metadata structure than the one implied by

the UML.

It is necessary to mention that the quality of the ODMG metamodel description is

much worse than in case of the UML. There are flaws in the style that the ODMG use to

explain the goals and semantics of the metamodel, together with a lack of many

definitions and explanations. Methods to access and update a metabase are not

www.manaraa.com

– 41 –

described at all. Thus, ODBMS developers must induce the meaning from names and

parameters used in the specification, which will probably lead to incompatible (or non-

interoperable) solutions. In its present form, this part of the standard is underspecified

and ambiguous, thus making it difficult (or impossible) to understand the intended

usage of its features.

3.2 DBMS schema implementation

This section introduces the requirements that are to some extent contradictory to

those connected with descriptive role of metamodel. Definition of a metamodel

following the UML style guarantees expressiveness, however such a rich structure is

impractical or even unacceptable concerning the implementational requirements. The

database schema implementation brings the following criteria of metamodel quality:

• Simplicity. The metamodel and the metabase should be simple, natural, minimal

and easy to understand, in order to be efficiently used by developers of DBMS and

database administrators.

• Universality. Implementation of database languages and operations requires various

accessing and updating operations to the metabase. The metamodel should support

all such operations, and these operations should match, as closely as possible,

similar operations for regular data.

• Performance. Metabase operations that originate from the database management

system or from applications may be frequent, and thus it is important to organize the

metabase so as to guarantee fast run-time access and updating.

• Physical data structure information support. Data describing physical structures

(e.g. file organizations, sizes of collections, indices, access methods, etc.) as well as

data used for optimization (access statistics, selectivity ratios, materialized views,

stored results of methods, etc.) must be included in the metabase. Although this

information is not relevant to the database conceptual model, the metabase is the

only place to store it. Thus, it would be appropriate to allow extensions to the

metamodel structure, to provide storage for all necessary information regarding the

physical properties of a database.

www.manaraa.com

– 42 –

• Privacy and security. As stated previously, this aspect is not relevant to the

database conceptual model, but the metabase repository is usually the place to store

information on privacy and security rules. The metabase repository itself should also

be a subject for strong security rules.

• Extensibility. The metabase structure and interfaces should be easily extendable to

support further development and extensions of DBMS functionalities. There are

features such as views, constraints, active rules, stored procedures, etc. which could

be incorporated into future ODBMS standards and implementations.

In this role the metamodel presented in the ODMG standard is too complex: 31

interfaces, 22 bi-directional associations, 29 inheritance relationships and 64 operations.

It is too difficult to understand and use by programmers. The worse, this already large

structure is by no means complete. There are many examples showing that the defined

methods are not able to fulfill all necessary requests. Some of abovementioned features

requiring standardization (e.g. privacy and security) have not been addressed so far.

Some other (e.g. some kinds of physical data structure information) may need to be a

subject of database vendor’s custom extensions that would further complicate the

metamodel structure. Moreover, future extensions of the standard, such as rules and

triggers, views, database procedures, methods (not covered by the ODMG standard)

will cause further growth in the complexity of the metamodel. Summing up, the ODMG

metamodel structure is very complex and at the same time far from being complete.

This leads to the conclusion that this style of metamodel definition would result in an

interface too complicated to be effectively used by programmers.

3.3 Generic programming through reflection

As explicitly stated, the ODMG metamodel should have the same role as the

Interface Repository of the CORBA standard, which presents some data structures

together with operations (collected in interfaces) to interrogate and manipulate the

defined IDL interfaces. The primary goal of the Interface Repository of CORBA is

dynamic invocations, i.e. generic programming through reflection. This goal is not

supported by ODMG, because the standard does not define all necessary features [47].

www.manaraa.com

– 43 –

Nevertheless, such reflective capabilities proved to be useful e.g. in SQL and

should certainly be considered in a standard for ODBMS. Generic programming

through reflection requires the following steps:

1. Accessing the metamodel repository to retrieve all data necessary to formulate a

dynamic request.

2. Construction of the dynamic request, e.g. as a string, representing a (parameterized)

query.

3. Executing the request (with parameters). This assumes the invocation of a special

utility, which takes the request as an argument. The result is placed in a data

structure specifically prepared for this task. Since a request is usually executed

several times, it is desirable to provide a preparation function that stores the

optimized request in a convenient run-time format.

4. Utilizing the result. In more complicated cases the type of result is unknown in

advance and has to be determined during run time by a special utility that parses the

request against the metamodel information.

Although the ODMG standard specifies access to meta-information, thus

supporting step 1, it does not provide any support for the subsequent steps (for a

detailed discussion see [47]).

The four reflection steps are implemented in dynamic SQL (SQL-89 and SQL-92)

and in CORBA DII. Of special interest are the requirements for step 4. For the result

returned, it is necessary to construct data structures whose types have to be determined

during run-time. A query result type can constitute a complex structure, perhaps

different from all types already represented in the schema repository. This structure can

refer to types stored in the schema repository. Moreover, it must be inter-mixed (or

linked) with sub-values of the request result, because for each atomic or complex sub-

element of the result, the programmer must be able to retrieve its type during run time.

Hence the metamodel has to guarantee that every separable data item stored in database

is connected to information on its type and this information must be available after

query execution. Construction and utilization of such information presents an essential

research problem.

 Similarly, access to a metamodel repository is necessary to determine the

structure of parameters required by the constructed request. Such features are available

www.manaraa.com

– 44 –

in SQL through the “describe” statement. In contrast to the relational model, an object

model has to deal with arbitrarily complex types of query results. The ODMG standard

does not specify this aspect of the metamodel, thus a substantial subset of generic

programming tasks are not implementable.

To allow generic programming and portability, the standard (including its

metamodel definition) must be very precise in each of the abovementioned aspects,

including standardization of programming facilities concerning steps 2, 3 and 4. Even

subtle differences in the organization of database repositories, their access operations or

request execution functionality, undermine the portability of generic applications.

3.4 Additional schema elements and extensibility

As already stated, a database schema has to store also a number of items not

directly reflected in the data model. In particular, additional information is needed to

support data storage. Additional elements may concern information on physical

database structure. Those of them (e.g. the number of elements in collections) that could

be explicitly accessed by application developers, have to be defined in the standard.

Some others, e.g. presence of indices, different kinds of data access statistics, etc., could

be the subject of extensions proprietary to a particular ODBMS.

Another example of additional metadata elements are information on ownership

and access permissions. Since such mechanisms are built into the DBMS and accessed

by applications, appropriate metadata elements should be the subject of standardization

(c.f. CORBA Security Service [40]).

In contrast to the relational model, type definitions in object systems are separated

from data structures. Hence a metamodel repository must store definitions of

types/classes/interfaces as distinguishable features connected to meta-information on

storage structures.

3.5 Schema evolution and Software Configuration
Management

Schema evolution capability is an important feature of a modern DBMS and is

one of the most prominent issues to consider during database metamodel design. In

contrast to the majority of the papers devoted to this subject, which are focused on

www.manaraa.com

– 45 –

validity of schema modifications and on the subsequent object conversions, this work

emphasizes the Software Configuration Management (SCM) aspect of a schema change.

Thus, in this section the different issues of software configuration management are

summarized and their relevance to DBMS itself is investigated.

Schema evolution in object databases

As a prominent feature of modern DBMS, schema evolution is supported in a

number of commercial products. Unfortunately, this important aspect of ODBMS

functionality is not effectively standardized and thus it is realized through proprietary

solutions. The ODMG standard touches this issue only implicitly and, a will be shown,

for different reasons inadequately. It may be surprising that the standard does not deal

with this issue, especially, taking into account that the interfaces used to define its

metamodel provide the modification operations. Their presence is adequate only in the

context of schema evolution.

This aspect of database functionality has been present for a long time as one of the

main features to be introduced in object-oriented DBMS [4] and its importance is

unquestionable. Although the database literature contains over a hundred papers

devoted to the problem (e.g. [8],[18],[43],[45],[58]), it seem to be far from being solved.

The majority of these proposals, although inspiring, can be perceived as too idealistic

for today’s software development practice. Taking a more pragmatic approach, this

section presents the problem from the software engineering point of view.

Obviously, the schema evolution problem is not reduced to some combination of

simple and sophisticated operations on the schema alone. After changes to a database

schema, the corresponding database objects must be reorganized to satisfy the typing

constraints induced by the new schema. Moreover, application programs acting on the

database must be altered. Only some simple changes, such as the addition of a new

class, association, attribute, procedure or method do not impact on existing applications,

and only in the case of a proper level of data independence. Naive approaches reduce

the problem to operations on the metadata repository. This is a minor problem, which

can be solved simply (with no research), by removing the old schema and inserting a

new schema from scratch. If database application software is designed according to

software configuration management principles, then the documentation concerning an

old and a new schema must be stored in the SCM repository. Hence, storing historical

www.manaraa.com

– 46 –

information on previous database schemata in a metadata repository (as postulated by

some papers) in the majority of cases is useless.13 In fact, apart from few very specific

applications it is necessary to maintain at each moment exactly one valid schema

version, with the requirement of consistent handling the changes applied to the schema.

On the other hand, serious treatment of SCM and software change management

excludes ad hoc, undocumented changes in the database schema.

The ODMG solution (as well as many papers devoted to schema evolution)

neglects the software configuration and software change management aspects. This

seems to result from the fact that although the DBMS construction and software

configuration management constitute the well established areas of research, they are

usually considered in separation from each other. To effectively support the schema

change in larger systems, a DBMS should provide features for storing dependency

information concerning the schema. The advantage of such solution over storing them

together with other configuration data within an SCM repository, would be the ability of

automatically discover and register dependencies concerning database elements. This

would require new metamodel constructs dedicated to this role.

Assuring system’s consistency after schema change

Maintaining the consistency between regular data and metadata is the most

obvious requirement in the context of schema evolution. This is also relatively easy to

realize, as both elements are managed solely by a DBMS. Therefore, the most

significant practical problem related to schema management is the schema change

impact on database-dependent applications. This has been recognized and different

attempts to eliminate that issue were made.

Many papers assume that the problem can be solved by database views. After

changing a schema one can define views, which provide virtual mappings from the

existing objects to the new schema; hence no changes occur in database object and no

changes in existing applications is required. Alternatively, one can convert existing

objects according to the new schema, but together defines views, which preserve the old

schema for already defined applications. In both cases, old applications need not be

altered, hence the major problem of schema evolution is solved.

13 Nevertheless, some parts of schema changes history may need to be maintained by DBMS internally, to
perform the deferred object conversion consistently (see e.g. [33]).

www.manaraa.com

– 47 –

In the majority of cases such an approach is idealistic for the following reasons:

• Some changes in a schema stem from unsatisfactory properties of applications,

hence changes of applications are inevitable.

• Some changes in a schema stem from changes in business data ontology (e.g.

implied by new law regulations). Any automatic mapping of existing data is unable

to fulfill new business requirements.

• View definition languages are not sufficiently powerful to cover all possible

mappings. There are many mappings not covered by SQL views.

• The view updating problem is solved only in specific cases and (probably) will

never be solved in the general case. Hence many applications that require advanced

view updating, cannot rely on this approach.

• Access to data through views may result in unacceptable degradation in

performance. Although materialized views partly solve the problem, this approach

implies disadvantages: an additional storage, the updating of materialized views

after updating of the original database, the updating of the database after updating

the view.

• Applications written in languages such as C++ and Java are tightly coupled to

physical properties of database objects. Many (sometimes undocumented and low-

level) dependencies between application programs and database object limit the use

of database views.

In summary, although database views provide some hope for schema evolution,

this approach is non-applicable in majority of cases. More detailed discussion on this

topic can be found in [56].

Another approach to schema evolution can be based on concepts such as wrappers

and mediators. The conceptual border between wrappers and mediators is undefined - it

is usually assumed that wrappers implement simple mappings and mediators possess

some “intelligence”. The approach is similar to the approach employing database views,

but in contrast to database views, which are defined in high-level query languages

(SQL), wrappers and mediators are proprietary solutions, tightly coupled to a category

of applications and written in lower-level languages (C/C++, Java, etc.). The approach

www.manaraa.com

– 48 –

is more realistic than the approach based on database views, but it requires low-level

programming. It is extensively used in CORBA-based environments (in CORBA terms,

wrappers and mediators are covered by the concepts of adapter and skeleton). Rules for

designing and writing wrappers and mediators are not formalized or disciplined: each

problem requires a standalone solution. Some of the abovementioned disadvantages of

using views are also true for the approach based on wrappers and mediators. In

particular, if a change concerns data representation or business data ontology then any

kind of wrapper or mediator may be unable to solve the problem. In any case, the

change will affect applications.

Concluding, there is probably no satisfactory solution that would effectively

isolate application programmers from the change impact. Thus handling this aspect of

software change by resorting to the SCM methods would be inexplicable.

Schema evolution in software change management

Schema evolution forms part of a more general topic, which is referred to as

software change management. It concerns the maintenance phase in the software life

cycle. The cost of maintenance is very high and in total can, by several times, exceed

the cost of initial software development. Thus, some discipline is necessary to reduce

the cost. Software change management provides activities during the software

development, operation and maintenance to support software changes. It also

determines disciplined processes for altering software after changes. Both of these

aspects are important. If software developers and clients neglect certain activities

addressing future (usually unknown) software changes, then the future cost of changes

can be extremely high. Changes to the software should follow some life cycle to reduce

cost and time, and to achieve proper software quality.

Basic activities of the software change management during software development

and operation are the following (among many others):

• Keeping high quality, availability and up-to-dateness of user and system

requirements, as well as analytical and technical documentation.

• Keeping clarity of software conceptual models, including the database schema and

the structure of software modules.

www.manaraa.com

– 49 –

• Preserving proper software architecture, which reduces contamination of software

changes (for example, three-tier or multi-tier architectures).

• Precise specification of interfaces between software modules.

• Supporting software reuse by the identification and specification of reusable assets

and generic modules (e.g. templates); supporting reuse by object-oriented methods

of software analysis, design and construction.

• Using high quality and high-level abstraction of software tools, avoiding

programming in low-level languages, avoiding proprietary solutions and hybrid,

eclectic architectures.

• Preserving software quality by following quality assurance procedures and

standards.

• Software configuration management, which includes safe storage of all documents

which appear during software development (source codes, requirements, technical

documentation, etc.), preserving completeness and availability of the documents,

keeping information on software versions, and keeping completeness and mutual

consistency of all documents within a version (including historical versions).

The software change management must also provide activities to accomplish

organized software change processes, in particular, the following:

• Organizing the process of reporting problems in software and/or in (changing) user

or system requirements.

• Collecting and storing software problem reports; organizing processes in which

some organization units (e.g. a software change committee) are responsible for

assessing reports and qualifying them according to importance, urgency, potential

cost and impact on other software modules.

• Organizing preliminary diagnosis of software problems and cost estimations of

software changes.

• Decision processes concerning the scope of software changes and/or making new

versions of the software.

www.manaraa.com

– 50 –

• Planning software changes, including feasibility studies, estimating costs and time,

scheduling, organization of software development team responsible for the changes,

organizing software quality assurance processes, testing of the changed software,

regression testing of unchanged software (which can potentially be influenced by

the change), documentation, SCM, etc.

• Organizing the design and implementation of software changes.

• Organizing testing changed software according to software testing plan.

• Organizing regression testing (testing unchanged modules that can be influenced by

the change).

• Documenting changes, including software requirements, analytical, technical and

user documentation.

• Installation of changed software, training of users and acceptance tests.

• Learning from change, and collecting historical data (cost, time, etc.) concerning

software changes, to improve the change processes in the future.

A proposal concerning schema evolution should refer to the activities of software

development presented above, to determine a clear goal for the research. It can be

formulated in terms of cost, time or quality of particular activities, and/or in terms of

software quality.

Software Configuration Management

Schema evolution is closely related to another area of software engineering,

namely the Software Configuration Management (SCM). SCM is a discipline for

establishing and maintaining the integrity of the products of a software project

throughout the project’s lifecycle [22],[23],[24],[25],[26]. SCM consists of planning,

organizing, surveillance, controlling and coordinating activities, making it possible to

identify, store and secure all components of the software and its documentation during

the entire software life cycle, including change management. SCM is especially

important if a project lasts several years and/or has many versions due to changing user

requirements or system requirements. Bad SCM can totally paralyze a project. Schema

evolution means a new version of a schema and, in consequence, a new version of the

database, and a new version of applications. Thus, it must be disciplined by SCM.

www.manaraa.com

– 51 –

A basic entity that SCM deals with is a software configuration item (SCI). An SCI

can be atomic or complex. Complex SCIs include all software artifacts that present

intermediate or final software products, including source code, documentation, tools,

tests, etc. The basic principle behind SCM is that SCIs must be consistent. SCIs frozen

for changes are called baselines. Some SCIs are called versions, revisions and releases.

All software entities that are used or produced within a particular software version

must be collected together as SCIs and stored carefully. This makes it possible to avoid

situations where new code is associated with old documentation; old code cannot be re-

compiled because a relevant older compiler version is no longer available, etc.

The scope of SCM concerns:

• Documentation: user requirements, system requirements, analysis and design

documents, testing documents, software quality assurance documents, etc.

• Modules with source codes, object codes, program libraries, and binary codes.

• Designed graphics, user screens, Web pages, etc.

• Text files, dictionaries, databases.

• Workspace tools: hardware, compilers, linkers, interpreters, protocols, libraries,

RAD tools, CASE tools.

• Software target hardware and software configurations (as documents or scripts).

• Testing configurations, data, software and results.

• Change management documents: new user requirements, new system requirements,

software problem reports, decisions of the software change committee, new code,

results of testing, etc.

As follows from the above, all versions of a schema must be the subject of SCM.

The new schema must be stored within a consistent configuration which includes new

requirements, diagnosis and analytical documentation, data conversion code, code of

new application modules, new design and implementation documentation, testing code,

data and results, software transfer documentation, user documentation, etc. Schema

evolution cannot be separated from other SCM aspects and activities.

www.manaraa.com

– 52 –

The fact that schema evolution is a part of SCM has consequences for the

metamodel. Usually, SCM implies the existence of a special repository for organizing

and storing all software and documentation entities that are the subject of SCM. In

simplest forms SCM is accomplished through packages such as CVS or Rational’s

ClearCase, used by project teams to keep track of code and documentation versions. In

more advanced cases, SCM is based on specially designed software libraries with

complex structures storing information on software modules, documentation,

configuration items, versions, projects, persons, roles in projects (project managers,

analysts, designers, programmers, etc.), physical locations (file directories, databases,

rooms, shelves, CD ROMs), etc. Such a library is related to another important activity

of a software company known as knowledge management (with emphasis on tacit

knowledge of people - participants of projects).

It may be assumed that all physical software entities/documents are stored as

library items (including source codes, documentation, compilers, DBMSs, operating

systems, CASE tools, etc.). Configuration items are logical structures built over

references to library items, to bear information on configurations, i.e. consistent sets of

software entities and documents. Some configuration items are baselines, i.e. frozen to

changes. Some baselines are releases, i.e. ready software products that are installed for

clients. Physical documents can be of several kinds: software components, management

documents, software quality assurance documents, working documents, etc.

Configuration items and library items can be the subject of activities: creating, deleting,

changing, accepting, inserting new items, etc. Activities are performed by project roles

or persons. A project role is responsible for some configuration items. A person has

access rights and can loan a paper document or lock an electronic document (to prevent

simultaneous changes). All historical activities, loans and locks are kept in the

repository, to enable restoring the history of changes.

It is implicitly assumed in the research devoted to schema evolution (in particular,

in the ODMG standard) that actions on the database schema repository will immediately

change a repository state. Sometimes, it is assumed that the repository will also be

prepared to keep historical information on previous schemata. Taking into account

software change management and SCM, such an approach is inadequate. A change to a

database schema must be carried out on the SCM repository, which should be prepared

www.manaraa.com

– 53 –

to keep both old and new schemata. Many other documents are related to this change,

including software problem reports, new requirements, managerial decision documents,

diagnostic documents, analytical documents, design documents, software code, testing

documents, etc. All of this information must be kept within an SCM repository rather

than within a metabase repository. The following subsection identifies other tasks

assignable to a metabase that would provide an important support of the SCM while

avoiding redundancy resulted from overlapping responsibilities.

Dependencies among software units

Some tasks of SCM are more efficient (in terms of cost, time and quality) if the

information on dependencies between software units could be properly organized. This

concerns the following tasks:

• Diagnosis of a problem: this information makes it easier to conclude which part of

the software is responsible for the problem or which part of the software is coupled

with an old requirement that needs to be changed.

• Planning and scheduling: the dependencies can show the scope of changes hence

make it possible to estimate the cost, time, staff, infrastructure, etc. necessary to

introduce a change.

• Implementing and testing: implementing a change requires (as a rule) knowledge

of dependencies of a changed software unit with other units.

• Regression testing: after a given unit is changed and tested it may happen that some

other units are affected. Regression testing means repeating testing processes on

unchanged units in order to confirm their validity.

• Preparing new documentation: after a change, further changes must frequently be

introduced to the existing software documents;

• User acceptance tests and education: after a change it is necessary to recognize

system functionalities which were affected by the change, thus requiring new user

acceptance tests and education;

• Configuration updating: after a change it is necessary to establish a new baseline

or a version (revision, release), i.e. consistent SCIs to be approved by official

www.manaraa.com

– 54 –

bodies. This requires recognition of all software components and documents that

had been affected by the change.

Some dependencies between software units are or can be stored within a metabase

repository. Other dependencies can be stored within an SCM repository, in particular, as

SCIs. Some dependencies are difficult to recognize, thus they may require some

extension of a metabase repository or an SCM repository. Below more important

dependencies are listed.

• Configuration dependency: some software and documentation units are dependent

because they create a consistent SCI. This dependency is usually stored within a

configuration repository. Configuration dependency is more relevant to SCM.

• Standardization dependency: which software items follow the same standards.

The dependency can be considered a particular case of the configuration

dependency if standards are stored as configuration items. Standardization

dependency is more relevant to SCM.

• Forward dependency between procedural units of the software (procedures,

functions, methods, views, etc.). The dependency shows which procedural units are

called from a given procedural unit. This dependency is easy to discover by analysis

of the code. The dependency can be stored within a metabase as e.g. a kind of UML

collaboration diagrams showing message flow between classes/interfaces. Forward

dependency is relevant to a metabase.

• Backward dependency between procedural units of the software. The dependency

is exactly reverse to the forward dependency. It is more valuable than the previous

one because it shows which software units call a given unit. As stated previously,

dependency can be stored within a metabase and associated with proper utilities.

Backward dependency is relevant to a metabase.

• Parametric dependency: it shows dependency between a given unit and a unit that

can be a parameter to the given unit. This concerns e.g. call-by-reference parameters

of methods or parameters of some (generic) software templates. Parametric

dependency is relevant to a metabase.

• Side effects dependency: Side effects concern all aspects of the data/computer

environment that can be affected by a given procedural software unit. Side effects

www.manaraa.com

– 55 –

concern operations on a database, global data (shared among applications),

environment variables, hardware devices, operating system registers, catalogs, files,

external communication (ports, Internet), etc. In languages such as Modula-2 and

DBPL some side effects are explicitly determined by special programming facilities

called import lists. Current object-oriented languages do not determine side effects

within class interfaces, hence the programmer and the system is unable to recognize

them directly. This can be the source of serious bugs, cf. the Ariane-5 rocket disaster

caused by an unspecified side effect. Side effects can be passive (a given procedural

unit reads the state of some external resources), or active (a given procedural unit

affects the state of some external resources). A metabase repository can store

information on side effects; providing the information on them is an obligatory part

of a software unit specification. For instance, a given method can be associated with

a part of database that can be read and updated. Side effects dependency is relevant

to a metabase and SCM.

• Event dependency: holds between a unit raising an event and a unit catching it and

triggering some action. The case is similar to forward and backward dependency.

This information is usually present in the specification of interfaces (CORBA IDL,

ODMG ODL), thus it can be stored within a metabase repository. Event dependency

is relevant to a metabase.

• Definitional dependency: holds between two data units, where one is a definition

and another one is an instance of this definition. The dependency concerns

interfaces, classes, types, patterns, skeletons, templates, schemas, specifications, etc.

and their instances. Definitional dependency is relevant to a metabase and SCM.

• Redundancy dependency: holds between units that contain redundant information;

for example, dependency between copies of some data that are introduced to

improve performance or to increase safety. Redundancy dependency is relevant to a

metabase and SCM.

• Stylistic dependency: holds between software units that follow the same design

style of a user interface; for example, screens shown to the user, manipulation

paradigms, used terminology and metaphors, etc. Stylistic dependency is more

relevant to SCM.

www.manaraa.com

– 56 –

Taking into account the entire population of software and documentation units,

their structure can be expressed as a (partly directed) colored graph, where each edge

represents some dependency between units and the color of an edge represents a

dependency kind. Some dependencies in this graph form subsets of

software/documentation units, in particular, configuration dependency, definitional

dependency and stylistic dependency. Some dependencies can be stored within a

metabase repository. Other dependencies are more relevant to a software configuration

repository.

In summary, the properly defined schema evolution problem should establish

dependencies between software and documentation units. It should clearly subdivide the

dependencies between a metabase repository and a configuration repository, and should

clearly determine benefits of storing the information on dependencies for particular

phases and aspects of the software life cycle, including the software change

management. None of the abovementioned aspects of schema evolution are taken into

account in the metamodel defined by the ODMG standard. This suggests that the

approach to schema evolution assumed by ODMG does not follow the principles of

professional software development. Unfortunately, the last statement also concerns the

majority of papers devoted to schema evolution.

Concluding, the schema evolution problem far exceeds the pure problem of

metadata management and should be considered as a part of software change and

configuration management. While some repository-updating operations would indeed

be useful, e.g. adding a new attribute or adding a new class, the operations do not solve

the essential problem. The major problem of schema evolution concerns altering a

database and – most of all – altering applications that operate on the database. This

problem is related to software engineering rather than to the pure database domain.

3.6 Separation of concerns

The importance of this issue (outlined in the previous chapter) seems to be

unquestionable. However, in case of DBMSs two factors need to be noted. Firstly, a

DBMS is by its nature a tool less generic than a general-purpose programming

language. In effect, some of the features being potentially a subject of aspects specified

by a programming language are fixed in a DBMS in a form of its internal mechanisms.

www.manaraa.com

– 57 –

Secondly, the main issue of an ODBMS metamodel is its overall complexity. An aspect-

supporting mechanism may appear not worth of the cost of maintaining additional

constructs. Those pros and cons are further investigated in the next chapter.

3.7 Ontology

As already suggested, it is also necessary for a database schema to include

information forming its ontology. Even if such information were to be used during

human-assisted resource discovery and integration rather than by autonomous agent

software, it is obvious that much more information than just structural constraints and

interface signatures is needed. However, such descriptions seem to be to a large extent

domain-specific and thus difficult to fix in the form of standardized format. Thus the

description structure should be open and allow for unambiguous vocabulary

specification, as suggested by the RDF specification outlined in the previous chapter

[60]. Having specified a flexible structure of such description, a choice concerning

vocabulary standardization can be made. The options are either a very general property

set like the Dublin Core Metadata Element Set [11] or a family of domain-specific

profiles in the spirit of the OMG Domain Specifications, or a combination of both

approaches.

www.manaraa.com

– 58 –

4 Proposed features of the DBMS metamodel

In this chapter, some general directions for the construction of database

metamodel are presented. The aim is to make it as simple as possible, flexible and open

for future extensions. Some of the more specific features and issues of such metamodel

are also addressed.

4.1 Metadata manipulation language

There is an opinion that the SQL language has been the key feature that brought

the broad acceptance of relational databases. At the same time the limitations of the

ODMG’s OQL (Object Query Language), a very limited support of this language by

commercially available ODBMS and definitely secondary role of that language

assumed by the vendors, seem to be an important obstacle for popularization of the

object databases [7].

For this reason, the general assumption of this work is that a fully-fledged query

language equipped with imperative constructs is necessary as the main (and usually

sufficient) mean of implementing database applications [54]. This would make the

general-purpose programming languages an auxiliary tool, needed only to realize a

specific tasks not supported by the database language. Such a big conceptual change

makes many of the solutions suggested in this work further from the current ODMG

proposal than they could be. Moreover it raises questions about the feasibility of a wider

acceptance of a new language. Anyway, such change seems to be indispensable in order

to rebuild the currently low-level object database interfaces, to make them comparable

to powerful tools available for relational database systems in terms of programmer’s

productivity.

The usage of such language would of course also concern schema. A standard

generic set of operations for metadata search and manipulation (together with their

allowed usage scenarios) should be defined. A predefined set of methods is a bad

solution as it contributes to the metamodel complexity while not guaranteeing the

completeness of functionality. Such an approach is assumed in [51], where a special

metamodel language MetaOQL is proposed. However, after defining catalogs as object-

oriented structures, they can be interrogated by a regular OQL-like query language,

www.manaraa.com

– 59 –

extended by manipulation capabilities, e.g. as proposed in [55]. Because the structure of

the catalogs can be recursive, it is essential to provide corresponding operators in a

query/manipulation language, such as transitive closures and/or recursive procedures

and views.14 These operators are not considered for OQL. So far, only the object query

language SBQL of the prototype system Loqis [57] fully implements them. Such

operators are provided for SQL3/SQL1999 and some variant of them is implemented in

the Oracle ORDBMS. Moreover, to make database applications portable the high-level

catalog structure must be the subject of the standard.

The above suggestions support the assumed simplicity and minimality of

programmer’s interface. A similar solution is provided by the SQL-92 standard for

relational databases, where catalogs are organized as regular tables accessed via regular

SQL. Using the same constructs to access the database and the metamodel repository

would not only make it easier for programmers, but would also be advantageous for

performance due to utilizing a query optimizer implemented in the corresponding query

language.

In case of data items that are to be accessed in a number of ways it is critical to

provide a fully universal generic interface. Even an extension to the current collection

of methods proposed by ODMG cannot guarantee that all requests are available.

Moreover, programmers should be able to create their own access/manipulation

abstractions (methods, views, procedures, etc.) and store them as a part of the metadata

repository. In summary, this suggests the solution, where the metadata repository could

be interrogated and processed by a universal query/programming language a la PL/SQL

of Oracle or SQL3/SQL1999. This solution also addresses a part of the schema

evolution topic that deals with changing the state of the metabase repository.

4.2 Simplifying the metamodel

As it was already emphasized, the main problems with the current metamodel

definition from ODMG results from its size and redundancy, making it too complicated

for implementation and usage by programmers. There are two general means to reduce

the complexity of metamodel access. Firstly, the removal of some inessential concepts

14 Again, such features are applicable also to regular data. This leads to the conclusion that the metadata
and regular data can be accessed in a uniform way, except for additional constraints on manipulation of
the former.

www.manaraa.com

– 60 –

can be considered. Secondly, the remaining concepts should be arranged into a structure

guaranteeing simplicity of its access and flexibility of its future modifications.

Minimality of a metamodel

There are several options to reduce the overall number of metamodel concepts.

The simplest improvement in this direction is the removal of concepts that are

redundant or of limited use. For instance, the removal of the set concept can be

considered, because the multi-set (bag) covers it and applications of sets are marginal

(SQL does not deal with sets but with bags). Another recommendation which can

considerably simplify the metamodel (as well as a query language) concerns object

relativism. It assumes uniform treatment of data elements independently of a data

hierarchy level. Thus, differentiating between the concepts of object, attribute,

subattribute, becomes secondary. Some simplifications can also be expected from the

clean definitions of the concepts of interface, type and class and their interrelations.

An important source of redundancy of the ODMG standard is the approach aimed

to directly support different language bindings. This is another argument in favor of

introducing a single, unified database language in the spirit of PL/SQL as a main and

self-dependent mean of manipulating both regular data and metadata.

Flattening a metamodel structure

The basic step toward simplifying the metamodel definition concerns flattening its

structure. Separate metamodel constructs like Parameter, Interface or Attribute can be

replaced with one construct, say Metaobject, equipped with additional meta-attribute

kind, whose values can be strings “parameter”, “interface”, “attribute”, or others,

possibly defined in the future; Fig. 6.

This approach radically reduces the number of concepts that the metadata

repository must deal with. Moreover, it supports extensibility, because a new concept

means only a new value of the attribute “kind”. The metabase could be limited to only a

few constructs, as demonstrated in Fig. 7. Although this meta-schema does not support

some useful concepts (e.g. complex and repeating meta-attributes, attributes of meta-

relationships), it constitutes a sufficient base for the definition of the majority of

constructs provided by the ODMG metamodel. To provide complex/repeating meta-

attributes the meta-values can be extended in the XML style.

www.manaraa.com

– 61 –

Attribute
name: "empNo"

Specification of concepts Instances of concepts

Interface
name: "Person"

ODMG solution: Interface
name: string

Attribute
name: string

Flattened version: MetaObject
name: string
kind: string

MetaObject
name: "Person"
kind: "interface"

MetaObject
name: "empNo"
kind: "attribute"

Fig. 6. Original and flattened ODMG concepts

MetaObject
name: string
kind: string

MetaValue
value: string

MetaAttribute
name: string

describedElement
metavalue

instance
description

*
*

source target

MetaRelationship
name: string

* *

Fig. 7. Concepts of the flattened metamodel

Fig. 8 presents a simple ODL schema and Fig. 9 and Fig. 1015 present one

possible state of the schema repository according to the metamodel presented in Fig. 7.

Number of objects = 19Number of objects = 1456

*

Person
name

Employee
empNo [0..1]

Department
deptName

works_in employs

Fig. 8. A simple ODL schema

The large part of the presented metadata is used to define appropriate object data

model constructs. In order to define a standard metamodel, the flattened metamodel has

to be accompanied with additional specifications, which should include:

15 Those examples use metadata concepts following the original ODMG terminology.

www.manaraa.com

– 62 –

• Predefined values of the meta-attribute “kind” in the metaclass “MetaObject” (e.g.

“class”, “interface”, “attribute”, etc.); they should be collected in an extensible

dictionary.

• Predefined values of meta-attributes “name” in metaclasses “MetaAttribute” (e.g.

“count”) and “MetaRelationship” (e.g. “specialization”).

• Constraints defining the allowed combination and context of these predefined

elements.

A standard metamodel should define the aforementioned values and constraints of

an object data model together with the most important additional data elements required

by functionalities of an ODBMS schema.

Flattening the metamodel makes it possible to introduce more generic operations

on metadata thus simplifying its usage by designers and programmers. Flattening also

supports extendibility, as it is easier to augment dictionaries than to modify the structure

of meta-interfaces. Simplification of the metadata structure can support the run-time

performance and maintenance of the metamodel definition.

MetaObject
name: "Employee"
kind: "interface"

MetaObject
name: "Department"

kind: "interface"

MetaObject
name: "empNo"
kind: "attribute"

MetaObject
name: "employs"

kind: "relationship"

MetaObject
name: "Person"
kind: "interface"

MetaValue
value: "1456"

MetaValue
value: "19"

MetaValue
value: "*"

MetaValue
value: "*"

MetaValue
value: "yes"

MetaValue
value: "*"

MetaValue
value: "yes"

MetaValue
value: "yes"

MetaValue
value: "yes"

MetaAttribute
name: "count"

MetaAttribute
name: "nullAllowed?"

MetaAttribute
name: "cardinality"

MetaAttribute
name: "root?"

Fig. 9. A metamodel instance: the usage of meta-attributes

www.manaraa.com

– 63 –

source

source

source

source

source

source

source

target

target

target

target

target

target

target

target

source

source

target

MetaObject
name: "name"

kind: "attribute"

MetaObject
name: "empNo"
kind: "attribute"

MetaObject
name: "deptName"

kind: "attribute"

MetaObject
name: "works_in"

kind: "relationship"

MetaObject
name: "employs"

kind: "relationship"

MetaRelationship
name: "subobject"

MetaRelationship
name: "specialization"

MetaRelationship
name: "subobject"

MetaRelationship
name: "subobject"

MetaRelationship
name: "subobject"

MetaRelationship
name: "subobject"

MetaRelationship
name: "leads to"

MetaRelationship
name: "leads to"

MetaObject
name: "Person"
kind: "interface"

MetaObject
name: "Department"

kind: "interface"

MetaObject
name: "Employee"
kind: "interface"

MetaRelationship
name: "reverse"

Fig. 10. A metamodel instance: the usage of meta-relationships

4.3 Conceptual view of the metamodel

As already mentioned, the required simplicity of database schema structure is

contradictory to the descriptive role of metamodel, which emphasizes the need of

metamodel expressiveness. Thus the conceptual view of discussed metamodel

constructs is presented in a style of the UML metamodel. This form is used here for

descriptive purposes only. The way of transforming such structure into the flattened

form used during implementation is provided.

The base for metamodel definition

The style of metalevel definition chosen here, and represented e.g. by the OMG

UML and MOF (Meta Object Facility) standards, follows the common four-level

approach to metamodeling (see e.g. [16],[39],[41]), where the entities constituting a

system are categorized into four layers: user data, model, metamodel and meta-

metamodel. The user data are structured according to the definition provided by a

model, and the model is defined in terms of a metamodel etc. The meta-metamodel is

intended to be the minimum set of intuitive constructs (having a direct mapping to the

implementation structures), that are used to define a metamodel. Such a multi-level

www.manaraa.com

– 64 –

metamodel definition, although inherently too complex to be directly implemented,

allows to declare and discuss the introduced constructs in a clear way. The basic role of

fourth layer (that is – a meta-metamodel) is to describe constructs used for the

metamodel definition as well as to define means of extending the metamodel definition.

However, in case of a DBMS metamodel, both issues seem to be of smaller importance

because of following reasons:

• Unlike in a modeling language, where the model constructs can be perceived as

volatile, the metamodel of DBMS materializes them in two ways. The metamodel

has to be related to the storage model (see Fig. 11) in order to define relationships

between regular data and metadata. Secondly, metamodel constructs have also to be

hardwired into the database query language definition.

• Since a DBMS needs appropriate implementation of each introduced metamodel

construct, the ability for a final user to extend the provided data model would be

either very limited or very costly in terms of introduced complexity.

Based on the above arguments, it may be assumed, that the metamodel (M2 in

Fig. 11), together with its mapping to the storage model, must be integrated into the

DBMS implementation. The absence of an explicit definition of the meta-metamodel

layer does not exclude the ability to extend its contents, especially because the flattened

form if well suited for any extensions. However, the abovementioned limitations hold,

making the more significant metamodel extensions the domain of DBMS vendors

rather. The mentioned mapping to the storage model must determine (Fig. 11):

• How a given kind of metadata (e.g. a Type metaobject named “Employee”) would

be represented in the object storage (e.g. Composite Object). In Fig. 11 this mapping

is shown using the «representation» dependency that should be understood as:

“every metaobject from model (that is M1 entity) describing a type will be stored as

a Composite Object”.

• How the instances of a given kind of metadata (e.g. an object of type Employee and

its attribute Name having the value “Smith”) would be represented (appropriately:

Composite Object, and Primitive Object). This mapping is denoted in Fig. 11 by the

«instance’s representation» dependency that says: “every regular data element (M0

level entity) being an instance of Class metaobject from model (M1 entity) will be

www.manaraa.com

– 65 –

stored as a Composite Object, while each regular data element being an instance of

Primitive Type metaobject from model will be stored as a Primitive Object”.

name : String

Employee

name = "Smith"

Employee

Object

PrimitiveObject CompositePointer

1

*

<<stored_as>>

<<stored_as>>

«instance»

ClassSubobject spec
1*

«instance»

type

1

usage
*

«instance»

PrimitiveTypeType

<<representation>>

<<instance's_representation>>

<<instance's_representation>>M2

M1

M0

<<stored_as>>

<<stored_as>>

Fig. 11. The dependencies between metamodel (M2) and the object storage model

As can be seen, the «stored as» dependencies are derived from the combination of

appropriate «instance of», «representation» and «instance’s representation»

dependencies. The types of metadata, as well as the storage model primitives shown in

this figure are exemplary only: they are chosen for their simplicity and they not

necessarily fit the proposed metamodel and storage model assumed in this work

(described in following sections). The main purpose here is to emphasize the connection

between the metamodel and the storage model that also seem to conceptually belong to

the M2 level.

That is, every newly introduced metadata element must be considered in terms of

its relations to the storage model. For example the dynamic object roles mechanism

(discussed in more detail later in this work), would require not only an extension to

metamodel, but also a new, specialized element and link in the storage model to

www.manaraa.com

– 66 –

distinguish the relationship of being a role from regular association or composition

among objects [28].

Metamodel core concepts

Fig. 12 shows an exemplary solution defining the core elements of the discussed

metamodel. It is focused on the most essential elements of the object data model and,

taking into account the different requirements concerning a database schema, it is by no

means complete. Even with such reduced scope, the model becomes quite complex. As

already stated however, this form makes it convenient to discuss some essential

improvements introduced here and to compare them to the ODMG standard solutions.

All basic metamodel concepts inherit from the MetaObject and therefore possess

the meta-attribute name, as practically every metadata element needs this property. The

most important branches of this generalization graph are Property, which generalizes all

the properties owned by Interface, and Type (described later), which describe any

information on database object’s structure and constraints. The procedure (method)

definition is conventional. It allows for declaring parameters, events and return types (in

case of a functional procedure). The parameter’s mutability determines whether the

attribute is passed as “input”, “output” or “input-output”. The use of meta-attribute

multiplicity in the StaticProperty metaclass makes it possible to abstract from the

definition of the collection concept.

*

name : String

MetaObject Type

GlobalDeclaration

Property

multiplicity

StructProperty

AssociationLink

SubobjectSpec

paramName : Single
mutability

Parameter

Procedure

parameter*

owner1

resultType 1

function

eventName : String

Event

risenBy*

risenEvent*

parameter
* paramType

1

Interface

primitiveKind

PrimitiveType

sub*
super
*

Class

derivedInterface *

implementation

0..1
0..1

0..1

*

definition

element

1

*

owner

0..1

target

1 usage

*

contents

1

usedBy
{XOR}

reverse

0..1

*

name : String

MetaObject Type

GlobalDeclaration

Property

multiplicity

StructProperty

AssociationLink

SubobjectSpec

paramName : Single
mutability

Parameter

Procedure

parameter*

owner1

resultType 1

function

eventName : String

Event

risenBy*

risenEvent*

parameter
* paramType

1

Interface

primitiveKind

PrimitiveType

sub*
super
*

Class

derivedInterface *

implementation

0..1
0..1

0..1

*

definition

element

1

*

owner

0..1

target

1 usage

*

contents

1

usedBy
{XOR}

reverse

0..1

Fig. 12. Conceptual view of the proposed metamodel

www.manaraa.com

– 67 –

Below, the most important features of the presented metamodel, especially those

distinguishing it from the ODMG solution are enumerated.

• Lack of method declarations. In contrast to the ODMG definition and similarly to

the UML metamodel, there are no method declarations in the proposed metamodel

definition. As explained earlier, a generic query/programming language is suggested

for the modification or retrieval of the schema information.

• Object relativism. For both the simplicity and flexibility of a DBMS it is desirable

to treat complex and primitive objects in a uniform way. A Type concept, serving as

a “common denominator” for both the complex objects’ interfaces and primitive

types has been introduced. Distinguishing Subobject Link from the Association Link

allows for potentially arbitrarily nested object compositions.

• Lack of the extent concept. That concept, present in the ODMG specification

seems to be rather problematic assuming object relativism with arbitrarily deep

object compositions or when considering a distributed environment. Particular

instances may have different meaning depending on their location within the data

structure. Thus if every type declaration were connected with single, explicit extent,

such situation would result in redundant type definitions. Moreover, if some

instances exist as subobjects of different higher-level complex objects, separating

them from their context and grouping within a single collection would be of no use.

On the other hand, a distributed environment would make problematic performing

the operations are checking the conditions that require access to all instances. For

those reasons, in this work it is assumed that instances of declared types can be

placed only within the separately declared locations.

• Information on global variables declarations included in the schema as a

separate construct. For some purposes (e.g. the ownership and security

management), the schema has to be aware of its instances. In absence of the extent

concept, the declaration of root object entry has to be introduced as a separate

construct. Note that within the metadata structure presented, such root declarations

are treated almost identically as the subobject declarations provided within Interface

definition.

www.manaraa.com

– 68 –

• No explicit collection types. With the multiplicity declaration describing

associations and sub-attribute declarations, the introduction of the collection concept

into the metamodel can be considered redundant. The required properties of a

collection can be described by the multiplicity attribute value of the Static Property.

In some cases it would be also necessary to distinguish between the list and multiset.

This can be accomplished by adding a meta-attribute “isOrdered”.

• Application of the terms “Interface”, “Type” and “Class”. Type can be described

as a constraint concerning the externally visible structure of an object, as well as the

context of its use. The role of an interface is to provide all the information necessary

to properly handle a given object. Although the typing information remains the

central component of an interface definition, the scope of the latter has to be much

wider. In the presented metamodel it specifies public structural and behavioral

properties, including raised events and possibly other properties. Class is an entity

providing implementation for interfaces declared in a system. Every registered class

contains all properties of a regular interface, which specify the complete list of

features provided by the implementation. Every interface not being a class defines a

subset of the features provided by its base class. In the other words, an interface

narrows the class’s default interface definition.

• Bi-directional associations. Although the reverse association of the Association

Link is optional, which suggests that unidirectional links could occur, this concerns

only the visibility of a given link through the interface. In order to support the

maintaining of referential integrity, every created Association Link requires also a

creation of reverse link.

Transforming conceptual metamodel into the flattened form

The conceptual view of metamodel like the one presented above needs to be

transformed to the flattened form, which is more appropriate for direct implementation.

In practice, this causes moving the majority of meta-metadata into the metadata level.

The resulting schema (see Fig. 7) is not only very small in terms of its structure, but also

it uses only the simplest concepts in its definition. This sub-section provides an

overview of the implications of using such a simplified structure.

www.manaraa.com

– 69 –

The process of mapping the metamodel structure like the one shown in the

previous section can be described by the following rules:

• Every concrete entity from the conceptual view of a metamodel is reflected into the

separate value of meta-attribute kind (see Fig. 7) of MetaObject.

• Inherited properties and constraints are imported into the set of features connected

with a given value of kind.

• The meta-attribute name (required for every entity of the proposed metamodel) is

mapped into the meta-attribute name of MetaObject.

• Every meta-attribute other than name is mapped into an instance of MetaAttribute in

“flat” metamodel. All instances of MetaObject having an appropriate kind value are

connected (through the MetaValue instance) to a single instance of MetaAttribute of

a given name. MetaValue connects exactly one MetaObject with exactly one

MetaAttribute used to describe that MetaObject.

• Every association existing in conceptual metamodel is reflected into the separate

value of the meta-attribute name of Meta Relationship, and the second, other value,

to provide the reverse relationship.16

It is now possible to summarize the meaning of the operations that can be

performed on the flattened metamodel. Below the constructs are enumerated and the

meaning of generic operations that can affect them is described.

• MetaObject:

− Add / remove an instance (the combination of values of “name” and “kind” meta-
attribute is unique among the meta-objects within a given scope) => schema
modification;

− Introduction of a new value of “kind” or its removal => change to the metamodel
of a given tool;

− Add / remove connected MetaRelationship instances => schema modification.

• MetaAttribute:

− Add / remove an instance (the values of “name” are unique among
MetaAttributes describing the MetaObjects of a given kind) => change to the
metamodel.

16 Note the difference in the nature between the meta-attribute “name” of MetaObject and the meta-
attributes “name” of MetaAttribute and MetaRelationship. The former are the names defined for a given
model, e.g. “Employee”. The latter are determined by a metamodel, e.g “NoOfElements” or
”InheritsFrom”.

www.manaraa.com

– 70 –

• MetaRelationship:

− Add / remove an instance => schema modification;
− Introduction of a new value of “name” or its removal => change to the

metamodel.

As can be seen, due to moving the majority of meta-metadata elements into the

metadata level, some of the operations identified above have more significant

implications than just schema modification: they affect an established data model. Since

with established DBMS, the majority of metamodel concepts must not be allowed to

change, those operations are of rather limited use during the normal usage of a system.

However, their straightforwardness makes it relatively easy to modify and extend the

definition of the standard metamodel, that is, to realize “model tailoring” as phrased in

[58].

Another important remark concerns the constraints connected with a given kind of

metaobject. The metamodel form presented in Fig. 12 requires some well-formed rules

that were not explicitly formulated even on that complex diagram. However, in case of

the flattened metamodel, such additional constraints become critical, since practically

no constraints (like e.g. multiplicities or the types of connected meta-entities) are

contained in the metamodel structure. Therefore, in addition to the set of predefined

values for meta-attributes like kind of MetaObject or name of MetaAttribute or

MetaRelationship, the standard needs to define the constraints specific for each such

value.

4.4 Database schema support for SCM

The main challenge of today’s software development is dealing with complexity.

In case of SCM this concerns especially the complexity of interdependencies among

configuration items. Therefore, in order to better support the SCM aspect, the database

metamodel definition should provide means to simplify the management of dependency

information. There seem to be two general ways of achieving this objective:

• Encapsulation / layered architecture. Applying the encapsulation, both to narrow

the interface of given classes, as well as to isolate the whole layers, allows to

shorten the dependency paths.

www.manaraa.com

– 71 –

• Dependency tracking. Even if the dependencies don’t span across many

configuration items, they still need to be recorded in a way that would guarantee

completeness of such information and ability to easily extract it.

Both of these postulates are rather intuitive and are presently treated as a sine qua

non in the development of large information systems. However, it is worth emphasizing,

that dependency between applications and database schema constitute a special kind of

dependency, which would be much more effectively handled when supported by the

core DBMS mechanisms. As already stated, certain kinds of dependency information

concern directly the database schema elements. Storing that information within the

schema would not significantly complicate the metadata structure.17 At the same time, it

would advantageous, since the database dependency description would be centralized

and, thanks to incorporating such mechanism into a database system, the dependency

recording would be enforced by the DBMS itself.

Dependency kinds relevant to the metabase

This subsection revisits those of earlier enumerated dependency kinds that were

considered relevant to the metabase, looking for optimum way of storing such

information within DBMS schema.

Forward dependency and backward dependency

Since these kinds of dependency are mutually symmetrical, they could be

registered using single construct, e.g. bi-directional association. Assuming traditional

architecture, of special interest are the dependencies between external applications and

the database, as well as dependencies among the database entities (the DBMS

dependencies of other system elements, as the least critical, would not be tracked).

The target of the dependency association would be any (that is, behavioral or

static) property of the database. The role of a dependent element would be played by

either DBMS native procedure / method, or by an external application’s procedure or

module. Therefore, in addition to the regular database schema elements and dependency

association, it is necessary to introduce a new construct, identifying an external

procedure that the schema would be otherwise not aware of.

17 Making the database aware of its dependent applications has previously been suggested e.g. in [13]
through the concept of “application table”. The intent of introducing that construct was slightly different
though.

www.manaraa.com

– 72 –

The optimum level of granularity of such information should be determined. The

dependent element would be always a procedure / method. However, in case of external

applications’ dependencies, it could be practical to use a higher level, e.g. a whole

application module. The target of a dependency can be either an interface or – assuming

more detailed tracking – all its properties that a given routine accesses.

Side effect dependency

All requests to properties that are non-local for a given procedural unit or

interface, can be qualified as side effect dependency. It is desirable to distinguish

between passive and active side effects (the latter result in the database’s state

modification) and to include this information in the metabase.

Additionally, it is necessary to note, that when an interface definition is

distinguished from the structure containing its instances, both the whole metamodel as

well as the dependency tracking features, get more complex. The assumption that the

user data definition is inseparable from the set of its instances is characteristic for the

traditional relational model and contributes to its simplicity. However, as explained

earlier, this approach poses some limitations thus it will not be followed here.

In that case it is not enough to connect the side effect dependency information

with particular interfaces. Since the instances of a given interface can be stored in

different globally accessible structures, the side effect dependency record should

identify the database’s global property declaration the manipulated properties are

accessed through. For example one would like to know not only that a given procedure

refers to objects of type Product, but also, that it operates e.g. only on objects stored

within the global variable avaliableProductsCatalog. Therefore, in order to describe the

side effect dependency it is necessary to identify the global variable a given procedure

uses to begin its navigation, as well as all properties it then uses in order to get the

reference to its target. Each such dependency concerning static property can be

described as a read-only or updating. In case of database procedures, the analogous

information would also be stored as a property of a given method in order to easily

identify methods whose invocation does not change the database state.

www.manaraa.com

– 73 –

Parametric dependency

This kind of dependency seems to be easier to handle than the side effect

dependency, because here the dependent procedure does not have to be aware of the

origin of provided parameter. No matter what kind of parameter it is: either the

procedure reads, updates or returns newly created instance, it is only necessary to

guarantee, that the definition of a given type stored in database metamodel has not been

changed in a way that affect that procedure. In this case the target of dependency link

would be simply a type definition the parameter refers to.

Proposed metamodel extensions

Providing features for storing the dependency information requires rather minor

additions to the overall metamodel definition. This is thanks to the fact, that all

constructs needed to describe the target of such dependencies are already part of the

metamodel. Fig. 13 shows the necessary constructs added to the fragment of the

metamodel from Fig. 12.

name : String

MetaObject

RootDeclaration

Property

multiplicity

StructProperty

ProcedureDefinition

element*

contents
1

declaredBy
{XOR}

0..1

identifier

BehavioralElement TypeSpecifier

Interface

primitiveKind

PrimitiveType

sub*
super
*

owner

0..1

isQuery [0..1]

SideEffectDepndcy
1

1

**

isQuery

dependentElem

target

user *

*
parametric

Dependency

name : String

MetaObject

RootDeclaration

Property

multiplicity

StructProperty

ProcedureDefinition

element*

contents
1

declaredBy
{XOR}

0..1

identifier

BehavioralElement TypeSpecifier

Interface

primitiveKind

PrimitiveType

sub*
super
*

owner

0..1

isQuery [0..1]

SideEffectDepndcy
1

1

**

isQuery

dependentElem

target

user *

*
parametric

Dependency

Fig. 13. A fragment of the proposed metamodel, with the dependency management constructs
included

In order to record also the dependencies of elements located outside the DBMS

responsibility (external applications using the database), a Behavioral Element concept

www.manaraa.com

– 74 –

has been added as a generalization of the Procedure Definition. Both elements can be

the source of dependency relationship: the former (more general) can denote an external

application’s elements, while the latter always refers to the native procedures stored

within the DBMS.

As suggested, the side effect dependencies are recorded for all elements that are

used in navigation or manipulated. For each such dependency a metaobject of

SideEffectDependency, connecting the dependent element description with dependency

target is created. The isQuery meta-attribute provides binary information on the

character of dependency: either pure read / navigation (value yes) or possibility to

modify a given element (value no). Note, that it is not necessary to record the exact path

of navigation. It is enough to determine, whether any part of a given procedure refers to

a given property or not. The isQuery value is optional, because when the dependency

target is a procedure, this information is not applicable. Parametric dependencies

descriptions refer to type definitions (that is, metaobjects representing primitive types or

interfaces). Other important dependencies relevant to the metabase (e.g. event

dependency and definitional dependency) also can be derived from the outlined

metamodel structure.

Figure below (Fig. 14) presents an exemplary fragment of a schema, showing the

side-effect dependency of an external procedure UpdatePrices. That method refers to a

global variable OfferedProducts, which is capable of storing arbitrary number of objects

described by the interface Product. Through this interface, it can modify the subobject

(attribute) Price of type Currency. In contrast, the global variable OfferedProducts is

never modified by this procedure (it is used only for navigation).

www.manaraa.com

– 75 –

SideEffectDependency
isQuery: " no"

dependentElem

target

target

RootDeclaration

PrimitiveType
name: "Currency"
primitiveKind: …

SideEffectDependency
isQuery: "yes"BehavioralElement

name: "updatePrices"
id: "100"

contents

SubobjectLink
name: "Price"

multiplicity: "1"

definition

element

definition

dependentElem
Interface

name: "Product"

SideEffectDependency
isQuery: " no"

dependentElem

target

target

RootDeclaration

SubobjectLink
name: "OfferedProduct"

multiplicity: „*"

SubobjectLink
name: "OfferedProduct"

multiplicity: "*"

PrimitiveType
name: "Currency"
primitiveKind: …

SideEffectDependency
isQuery: "yes"BehavioralElement

name: "updatePrices"
id: "100"

contents

SubobjectLink
name: "Price"

multiplicity: "1"

definition

element

definition

dependentElem
Interface

name: "Product"

SideEffectDependency
isQuery: " no"

SideEffectDependency
isQuery: " no"

dependentElem

target

target

RootDeclarationRootDeclaration

PrimitiveType
name: "Currency"
primitiveKind: …

PrimitiveType
name: "Currency"
primitiveKind: …

SideEffectDependency
isQuery: "yes"

SideEffectDependency
isQuery: "yes"BehavioralElement

name: "updatePrices"
id: "100"

BehavioralElement
name: "updatePrices"

id: "100"

contents

SubobjectLink
name: "Price"

multiplicity: "1"

SubobjectLink
name: "Price"

multiplicity: "1"

definition

element

definition

dependentElem
Interface

name: "Product"
Interface

name: "Product"

SideEffectDependency
isQuery: " no"

SideEffectDependency
isQuery: " no"

dependentElem

target

target

RootDeclarationRootDeclaration

SubobjectLink
name: "OfferedProduct"

multiplicity: „*"

SubobjectLink
name: "OfferedProduct"

multiplicity: "*"

SubobjectLink
name: "OfferedProduct"

multiplicity: „*"

SubobjectLink
name: "OfferedProduct"

multiplicity: „*"

SubobjectLink
name: "OfferedProduct"

multiplicity: "*"

SubobjectLink
name: "OfferedProduct"

multiplicity: "*"

PrimitiveType
name: "Currency"
primitiveKind: …

PrimitiveType
name: "Currency"
primitiveKind: …

SideEffectDependency
isQuery: "yes"

SideEffectDependency
isQuery: "yes"BehavioralElement

name: "updatePrices"
id: "100"

BehavioralElement
name: "updatePrices"

id: "100"

contents

SubobjectLink
name: "Price"

multiplicity: "1"

SubobjectLink
name: "Price"

multiplicity: "1"

definition

element

definition

dependentElem
Interface

name: "Product"
Interface

name: "Product"

Fig. 14. An exemplary fragment of the DBMS schema, containing the side effect dependency
information for an external procedure updatePrices

Collecting the dependency information

When recording the dependency information, it is necessary to face the problem

similar to the one encountered between SCM system and other tools used in the

software development: the development tools may lack the ability of providing the

information needed for documenting the software configuration. Inability to

automatically extract all the dependency information makes it necessary to manually

document it, which can be considered as much less reliable. Thus almost all the

advantage of storing it within the schema instead of SCM repository would be lost.

There are various options of realizing such automatic dependency analysis. The

task is of reflective nature and solution depends on the way the database access is

performed. For example, the DBMS could record the dependencies during one phase of

the system testing and verify the completeness of collected information during further

tests. For each recorded dependency it would need to receive some id of the procedure

or unit that performs the database call. Note that adding that functionality to a DBMS

www.manaraa.com

– 76 –

that was not designed with such feature in mind could be problematic or at least result

in a rather inconvenient usage scenario.

Such identification process should be separated from regular database security

mechanism in order to not to deteriorate the DBMS performance during regular

operation.

The functionality considered here also shows that the usage of metabase is not

limited to internal DBMS implementation and that it thus should be realized as an

externally available feature.

4.5 Extending ODBMS data model: dynamic object roles

As it was suggested in the previous chapter, the metamodel in the scope defined in

the ODMG standard needs to be prepared for various future extensions, which can be

subdivided into the following kinds:

• Object data model extensions towards more powerful and expressible constructs;

• Database feature extensions like active rules, stored procedures, views, security

mechanisms etc.;

• Vendor-specific features not covered by standard;

• Limited means of extending metadata available for developers using a DBMS.

This section is intended to discuss the first from abovementioned kinds of

extension. While it is impossible to anticipate the future evolution of the mainstream

object model, there is at least one notion, namely – dynamic object role, whose

importance and amount of related research makes it strongly desirable to consider in

current proposals of an ODBMS metamodel. The notion is very intuitive and it is even

featured as an object-oriented modeling construct equally fundamental as objects and

associations among them [50].

Although very simple, the dynamic object role concept proves to be very useful

for conceptual modeling, where it allows for more adequate representation of real-world

dependencies, while avoiding the multiple-inheritance pitfalls.

www.manaraa.com

– 77 –

The research in dynamic roles resulted in a large number of proposals assuming

both object-oriented as well as other data models [3],[18],[59]. While presentation of

those approaches is outside the scope of this work, looking at the problem from the

database metamodel point of view requires formulating of the following remarks:

• Any proposal of such extension, more or less directly aimed towards standardization

and commercial usage, needs to take into account the current state of the art. As far

as it does not limit the clarity, usefulness or generally – the overall validity of

proposed feature, its definition should refer to currently used solutions.

• The proposal concerning data model extension needs to be complete in the sense, it

needs to provide both conceptual modeling constructs, as well as the ability to

directly implement them. Both factors need to be considered when incorporating the

concept into database metamodel.

For the abovementioned reasons, the following discussion of dynamic object roles

is limited to the overview of related solutions that are currently broadly used and to the

proposal of extending database metamodel with that construct in a way that keeps

compatibility and semblance to already existing notions.

Dynamic and multiple inheritance problem

This subsection provides an overview of the most popular solutions and problems

of multiple and / or dynamic inheritance modeling and implementation. In absence of

more suitable constructs, these notions are often used to model simpler cases of

statically of dynamically assigned multiple roles of an object. The popular examples are

a person, who can at the same time be a student, an employee, a club member etc.,

being able to gain and lose such roles over time; a building serving different purposes

etc. An example of a multiple though rather static classification can be a vehicle

specialized according to terrain, powering system, its function etc.

Each of above examples can be described as a single object having different sets

of properties connected with particular aspects of its existence. In case of a multiple yet

static classification, the most straightforward of traditional approaches to address it

would be a multiple inheritance. At the same time however, this solution bears the

largest number of problems and limitations:

• Possibility of name conflicts among inherited features.

www.manaraa.com

– 78 –

• Inability to dynamically reclassify object.

• Inability to describe more than one role of the same type (e.g. instance of a class

Employee or Student-Employee can not store information on person’s employment

in two different companies).

• Combinatorial growth of the number of classes.

In case of singular inheritance the situation is even worse, since no code reuse

occurs. That is, it becomes necessary to create “copy & paste” class definitions, where

in addition the substitutability (e.g. between “Student-Employee” and “Student” class

instances) can be lost.

The above remarks confirm that mixing different aspects of a given object’s

description into a single class is not a proper approach. The UML allows for specifying

different specialization hierarchies for each criteria and even marking some of them

dynamic. Such multidimensional classification results in much clearer model. However,

this part of the UML specification is not very detailed and, what is the most important,

implementation tools do not support such features, thus the model loses its clarity

during implementation.

Another notion bearing some of the desired features are Java’s inner classes. Such

class is defined within the scope of its outer (base) class and its instances possess links

to their base objects (being the instances of outer class). Thus such inner class can

access properties of its base class in a way similar as if it were a subclass. Instances of

inner class can be referenced either from inside of a base class’s object (that is, being its

attributes) or anywhere outside its base object (in the latter case making it unaware of its

dependent instances). Thus the following properties, resembling the dynamic object role

concept can be noted:

• Inner class can encapsulate some distinguished parts of object properties.

• Inner class’s methods have access to the state and behavior of the base object as if

they were defined in the outer class or its subclass.

• Arbitrary number of inner class instances connected with a given object can be

created or removed during runtime.

www.manaraa.com

– 79 –

• Instances of inner class connected with a given object of outer class are separated

from each other, so no name conflict can occur.

As can be seen, the construct has many interesting features and can be useful in

partitioning and encapsulating object’s properties. However, this notion is quite far from

widely agreed features of dynamic object roles in the following terms:

• There are no means of reassigning inner class object to be connected with another

outer class’s instance.

• Creating inner class definition requires access to the code of the outer (base) class.

This breaks the “Open-Closed” principle concerning class design.

• Private properties of outer class are accessible to inner class’s methods, which is

probably undesirable in case of object role.

• The inner class’s access to the properties of outer class does not provide the former

with interface of the outer class. Thus there is no substitutability between outer and

inner class’s instances.

Other interesting features come from the aspect-oriented programming (AOP)

language extensions. As mentioned in chapter 2, two general kinds of extending

features are available:

• “Pointcut” and “advice” declarations modify certain elements of program’s

control flow by augmenting or bypassing specified kinds of statements.

• Introduction is capable to substantially change the definition of a given class, both

in terms of behavior (new or overridden methods) as well as the structure (additional

attributes).

The latter feature allows to isolate properties introduced to a class design on

behalf of certain aspect or role of object’s existence. However, it is necessary to note,

that this mechanism is purely static and, although very powerful and advantageous in

terms of maintenance, it is not suitable for implementing dynamic object roles. Its

capabilities in this area seem to be analogous to static multiple inheritance.

The above overview suggests that although there are a number of already adapted

similar solutions, none of them can satisfactorily address the issue of dynamic object

roles, which are currently implemented in an indirect and rather low-level way (see e.g.

www.manaraa.com

– 80 –

[15]). Considering the fundamental importance of that notion, it is possible to conclude

that the dynamic roles should be introduced as a separate new construct both into

modeling and into implementation languages and the DBMS area.

Features of dynamic object role

As suggested, dynamic object roles are usually considered as a mean to eliminate

the shortcomings of inheritance mechanism provided by common OO programming

languages and DBMS. Modeling notations often provide quite sophisticated kinds of

generalization / specialization relationship (e.g. multi-aspect specialization, dynamic

classification etc.), while implementation tools are usually limited to static, multiple or

even singular inheritance. Moreover, even the means existing in modeling languages

(e.g. UML18) are not exhaustive or not defined precisely enough to satisfactorily

describe dynamically changing roles of objects. Thus the dynamic object role concept

needs to be treated as a new quality both in modeling and implementation area, since

analogies to other adopted solutions are quite superficial and may be misleading.

The simplest motivation behind that concept can be formulated as introducing a

highly intuitive notion, capable to cover features of multiple, multi-aspect and repetitive

inheritance while supporting its temporality. More thorough overview of the features of

role mechanism that have been suggested in literature, provided in [50], enumerates the

following properties:

• A role possesses its own properties and behavior, thus can be treated as a type.

• Different roles may share structure and behavior. This means, the role can make

available the properties defined in its base role or base object, by means of

inheritance or delegation.

• Roles depend on relationships. That is, model defines a pattern, under which object

of certain type can be connected to other objects within the pattern, and this results

in its playing a given role.

• An object may play different roles simultaneously. This makes the role mechanism a

mean of a multiple classification.

18 The UML standard has not defined support for dynamic object roles so far. The role concept exists in
the specification in a number of other meanings, notably – the named association end, as well as a slot in
collaboration specification (see [49]).

www.manaraa.com

– 81 –

• An object may play the same role several times, simultaneously. This reaches

further than a multiple classification since it assumes that an object can possess

more than one set of properties defined by a given role.

• An object may acquire and abandon roles dynamically and the sequence in which

roles may be acquired and relinquished can be subject to restrictions.

• Objects of unrelated types can play the same role. This seem to be natural, however

it may be little problematic to assure consistency if a role implementation is

assumed to be dependent on properties of its base object.

• Roles can play roles. This again suggests the role to have similar nature as a base

object, as it may be viewed as such by some other role.

• A role can be transferred from one object to another. This bears semblance to

UML’s [41] composition relationship, where although the component is dependent

on composition, it can be transferred to another one. On the other hand, an

assumption that a given role can for a certain time remain unconnected to any object

(like e.g. vacant position of a department manager), may be problematic (as above)

concerning dependencies on base object properties.

• The state of an object and its features can be role-specific. This assumes multiple

views of particular object, dependent of a selected role. This probably should

assume also possibility of overriding behavior in a way analogous to traditional

inheritance.

• Roles restrict access. Properties provided by the roles other than the currently

accessed one are invisible. However, if access restricting assumes also hiding the

properties of base object, this requires reconsidering of substitutability principle

connected with traditional inheritance.

Although some of those properties seem to be to some extent contradictory, the

above summary constitute a quite clear specification of features commonly expected

from postulated dynamic object role mechanism.

Incorporating dynamic object role into the metamodel

This subsection describes an attempt to introduce dynamic object role concept

into conceptual view of previously sketched object database metamodel. The main

www.manaraa.com

– 82 –

assumption is that although it needs to be a separate new construct, the new notion

should be as far as possible “tuned” to existing data model concepts and mechanisms

that support them.

Since role should be able to complement all kinds of properties the base object

possesses (e.g. subobjects (attributes), association links, behavior (operations), as well

as the ability to have its own roles), this requires supporting it with a specification

similar to that of a regular object. That is, an interface specifying role properties and a

class implementing them are necessary. Additionally, the role type definition brings an

additional constraint: role needs to be connected with its “player”, which can be a

regular object or another role. Moreover, if a role is treated as a property a base object is

aware of, a role multiplicity (like in case of attribute or association link), as well as

applicability to exactly one base interface can be considered.19 Following this path

requires very little change it the proposed metamodel (Fig. 15).

Role interface becomes a special kind of Interface, distinguished by the fact that

its instances, similarly like subobjects and association links are not independent (cannot

be instantiated in separation from their base objects).20

An important question concerning constraints imposed on the dynamic object role

construct is if a schema should specify (and allow) exactly one interface as a type of a

base object for each role specification. This constraint seems to be justified by the

following reasons:

• A role is indeed usually defined to extend the properties of exactly one object type.

If there are more related types, they should have something in common, so

generalization could be used as a role’s base.

• Operations provided by a role interface can have their implementation dependent on

particular properties (operations, attributes and association links) of the base object.

• If a reference to a role is intended to support all the base object’s features, this flavor

of substitutability requires appropriate type constraint.

19 It would be possible to go even further, by providing labels for partitioning object’s roles of the same
type into distinct sets (e.g. person’s employee role partitioned into full-time and part-time). However,
such feature does not seem to be worth of additional complexity.
20 Although the metamodel diagram (see Fig. 12 for a whole picture) allows all properties to be global
(through the root declaration), in case of roles this should be excluded by an additional constraint.

www.manaraa.com

– 83 –

Type

multiplicity

StructProperty

AssociationLink

SubobjectSpec

Interface

primitiveKind

PrimitiveType

sub*
super
*

Class

derivedInterface *

implementation

0..1
0..1

0..1

*

definition

1

target

1 usage

*

reverse

RoleInterface

Property

* element
owner 0..1

Type

multiplicity

StructProperty

AssociationLink

SubobjectSpec

Interface

primitiveKind

PrimitiveType

sub*
super
*

Class

derivedInterface *

implementation

0..1
0..1

0..1

*

definition

1

target

1 usage

*

reverse

RoleInterface

Property

* element
owner 0..1

Fig. 15. Role concept incorporated into conceptual metamodel (updated fragment of Fig. 12)

On the other hand, also more “loosely” connected roles can be considered. Such

roles would make no assumptions on their base objects’ types and serve as a “handles”

or “labels” for a number of otherwise unrelated objects. In such a case it is possible to

go even further by allowing the instances of such “loosely connected” role interface to

occur either as roles or as separate objects. That solution would effectively allow the

following kinds of interfaces:

• Interfaces describing base objects – which can be instantiated independently;

• Independent role interfaces, whose instances can occur either as separate objects or

as roles loosely connected with their base, which in turn may be constrained to be an

instance of one of specific types (indicated in the role’s definition);

• Dependent role interfaces, whose implementation does not depend on any base

object’s properties, but the design constraints them to be always connected with a

base of one of specific types;

www.manaraa.com

– 84 –

• Dependent role interfaces, whose implementation requires access to a base

object/role and which thus can be instantiated only as roles connected with their

bases (of particular type).

Interface

sub*
super
*

Class

derivedInterface *

implementation

0..1

1

isIndependent

AutonomousRoleLink

* handle

applicability *

RegularRoleLink

multiplicity

RoleLink

1 base

extension *

0..1 usage

Interface

sub*
super
*

Class

derivedInterface *

implementation

0..1

1

isIndependent

AutonomousRoleLink

* handle

applicability *

RegularRoleLink

multiplicity

RoleLink

1 base

extension *

0..1 usage

Fig. 16. Fragment of the proposed metamodel, introducing two kinds of dynamic object role
definitions

This makes necessary to distinguish two kinds of role declaration. The first kind

of role definition would depend on its base object’s (or base role’s) interface

specification. Thus it needs to be specified as belonging to a given base interface, as

assumed in Fig. 15. Another kind of role would resemble regular object in the sense that

it does not require any base element. However, its definition may explicitly specify an

arbitrary number of interfaces as intended base types. A separate flag is necessary to

indicate if instances of such role are allowed to exist as regular objects. To

accommodate both kinds of roles, the proposed metamodel has been restructured, to

identify the role definition through relationships rather than through the interface

concept specialization. Fig. 16 presents the appropriate fragment of the metamodel

diagram. Both kinds of objects (roles and regular objects) are described by interfaces.

Interface’s association to the role link determines kind of its instances. If no such

connection exists, interface describes a regular object. Otherwise it defines either a

regular role, designed as an extension of other (base) interface, or autonomous role. In

the latter case the isIndependent attribute determines if such role can exist as a regular

www.manaraa.com

– 85 –

object or if it is required to be connected to a base. From a point of view of a base

interface, such role was named a handle, as it is connected to a base object to serve

certain purposes, without requesting any of its specific properties.

As can be seen, this effectively results in three kinds of role dependency21 that

need to be indicated in design, including class diagrams. Fig. 17 presents all those kinds

of role dependency, introducing an ad-hoc UML-based notation to distinguish them.

Note the existence of role multiplicity specifications. Example a) presents the strongest

form of dependency, where role implementation depends on properties of its base

(employee role must always be connected with a person object). All role dependencies

are denoted by filled triangle, to exploit analogies to UML’s generalization and

composition relationships. Example b) assumes that a role is implemented as self-

sufficient and is allowed to exist as separated from its base (dept manager roles can be

referenced in a system, although they may denote a vacant position). This loose

dependency is denoted by dashed line. Finally, example c) is a more constrained form

of the case b). Here, although a role is also implemented as independent on any base, it

is required to always be connected with a base, which instantiates one of specified

interfaces (assignable resource has to describe either a car or a conference room). The

{XOR} constraint enforces it.

Car Conference Room

/ busy

Assignable Resource

0..1 0..1
{XOR}

Employee

name
address

Person

Dept Manager

0..1

*

a)

b)

c)

Fig. 17. Examples of different kinds of role dependency, introducing exemplary notation to
distinguish them

Because in case of such autonomous role the constraint specifying to which base

interfaces it is applicable does not seem to be essential, a significant simplification of

21 The meaning of the word dependency can be twofold. Firstly, role’s implementation can be dependent
on the interface defined for its base object. Secondly, in the objects layer the role is connected with its
base object or base role.

www.manaraa.com

– 86 –

the metamodel can be achieved by removing that specification. Then the role-specific

metamodel elements would be limited to just one recursive association (or association-

class) over the Interface (similar to the one specifying static generalization-

specialization graph), as shown in Fig. 18. The regular (dependent) role interfaces

would be distinguished by the existence of the link to its base. The autonomous role

interfaces would not differ from regular object interfaces. Thus all non-abstract

interfaces except the dependent ones, would be allowed to form arbitrary combinations

using the “base-role” link.

Interface

sub*
super
*

Class

multiplicity

RoleDependency

base

role
0..1

*derivedInterface *

implementation

0..1

Interface

sub*
super
*

Class

multiplicity

RoleDependency

base

role
0..1

*derivedInterface *

implementation

0..1

Fig. 18. Simplified solution of introducing the dynamic role concept into the metamodel

When a role extends or overrides the properties of its base object, a kind of

substitutability known from traditional inheritance seem to be possible for language

constructs dealing with roles. However, the analogy is quite superficial, and the link

between role interface and its base interface requires in majority of cases substantially

different treatment than regular generalization. Consider for example constraints on a

regular generalization-specialization graph. Cycles are not allowed since the resulting

structure would enforce mutually contradictory constraints on interfaces / classes within

a cycle. Similar constraint is not obvious in case of a role dependency graph, if the

weaker kind of dependency occurs. One could consider e.g. partial masking of object’s

properties in a given context by “covering” them with items coming from an instance of

its subclass. An exemplary usage of such construction in metamodeling is presented in

the next subsection (see Fig. 19). Although this example is rather peculiar, it is possible,

that if no serious conceptual problems occur, such specific structure could be of use in

conceptual modeling or as a design pattern.

www.manaraa.com

– 87 –

Use of the role concept in meta-modeling

As mentioned, the dynamic role concept is assumed to be one of the fundamental

abstractions of conceptual modeling. At the same time, the support for this original

option in DBMS requires appropriate language extensions, as well as a specific

primitive in the construction on database’s object store (see [28]). Additionally,

concerning previous postulate, that metadata should be manipulated in a way analogous

to regular data, leads to a question, if this new notion could be of use in metamodel

definition. This is not obvious, since for the sake of simplicity some constructs (like

operations or nested object compositions) are intentionally not used in the presented

proposal.

Dynamic object roles, although not essential for meta-modeling, seem to be well

suited for describing some metamodel elements like e.g. class’s derived interfaces

(perhaps also in connection with some authorization/access control mechanisms).

Appropriate modification of conceptual metamodel is presented in Fig. 19. This would

allow instances of a given class to be viewed through different interfaces, modifying an

original class’s specification.

Interface

sub*
super
*

Class

*

multiplicity

RoleDependency

base

role
0..1

*

Interface

sub*
super
*

Class

*

multiplicity

RoleDependency

base

role
0..1

*

Fig. 19. Dynamic role mechanism used in the metamodel to define derived interfaces of a class

Concluding, dynamic object role is an example of a prominent notion, which is

very likely to be introduced into future standard metamodel definitions. Since it

constitutes an extension of a core data model, a number of different areas have to be

considered. Among them are the following:

• conceptual modeling, including a graphical notation;

www.manaraa.com

– 88 –

• consistent and preferably limited change to an original metamodel definition;

• DBMS query language constructs;

• Database object store model;

• Possible usage of newly introduced concept in modeling the DBMS metadata.

Introduced notion needs to take into account and adjust to pre-existing solutions,

however only as far as such compliance does not appear to be a limiting factor.

4.6 Separation of concerns in a DBMS

The ability to modularize different concerns of developed system, discussed in

chapter 2, should be also considered in the context of a database metamodel. The base

requirements can be formulated as follows:

• Separate, single place for storing the code realizing a given requirement, which

makes it reasonably easy to localize.

• Ability to connect the concrete implementation of a requirement in a way that does

not affect the original functionality and is completely or partly transparent for it.

In some cases, an additional support from powerful reflective capabilities, as

proposed for some programming languages, can be considered [6], in order to provide:

• The meta level interception (MLI) and the access to the processed environment

using reasonably clear and simple programming constructs.

• Optionally, the ability to change the implementation of a given aspect during run

time.

A possible solution, providing necessary modularization and flexibility, would be

a usage of dynamic object roles in combination with an active rule mechanism, to

encapsulate particular concerns (or aspects). Defining a rule within a role would allow

to run an appropriate routine (after the interception of expected event), in the

environment of the processed object. Moreover, with presence of introspective

capabilities, the code would be generic that is, able to support the instances of a number

of different classes.

www.manaraa.com

– 89 –

However, it is necessary to note, that this would be a rather fine-grained

mechanism, since roles need to be attached to particular instances and by their nature,

are not shared. Thus it may be perceived to be redundant in case when particular

requirement concerns all instances of a given class. This could suggest the need for a

kind of class-scoped roles (analogous to static attributes and methods in object-oriented

programming languages) or (a conceptually cleaner solution) – connecting a “concern-

defining” role to a class rather than to an instance. However this would make a subject

instance state not available directly, and necessary additional language elements and

concepts would obscure the original idea.

4.7 Metamodel extensibility mechanisms

As already suggested, the extensibility of a database metamodel is important

especially concerning future changes to the standard definition and for easy integration

of vendor-specific features. Possible extensions made by DBMS users seem to be very

limited and may concern rather some static extensions to incorporate custom metadata.

When considering database metamodel extension features, it is worth to

investigate analogous solutions provided by the UML standard. Although the

applications of these two metamodel definitions are fundamentally different, some

conceptual similarities remain. One of them is the lack of operations used in a

metamodel definition.

As mentioned in its overview, the UML metamodel provides three kinds of

supporting features that can be used to extend the metamodel: constraints, tagged values

and stereotypes (see p. 15).

Treating those features as a kind of checklist for a database metamodel, firstly it is

necessary to mention the constraints. Indeed, the metamodel should be supported by

means of formulating additional specific constraints over database objects. A query

language seems to be very well suited for formulating such constraints. As already

stated, a number of analogous constraints need to be implemented within a DBMS to

maintain the consistency of the postulated flattened metadata structure.

Different roles the database metadata needs to fulfill, result in potentially

numerous extensions augmenting the schema with additional metadata. For this kind of

www.manaraa.com

– 90 –

metamodel modifications, dynamic object roles can be useful, as they constitute a

powerful mechanism that could easily realize the features of tagged values and

stereotype.

www.manaraa.com

– 91 –

5 Implementation

The prototype implementation of metadata repository presented here realizes the

postulate of flattening the metamodel and is intended to prove its advantages in terms of

simplicity and extensibility. Another issue investigated within this prototype is the

DBMS schema support for the SCM through the tracking of database dependencies.

The implementation is of limited scope in a sense that it is not a part of a complete

DBMS prototype. The most important consequence is that the postulate of using generic

operations of a query language to access the metadata is not realized here.22

It was developed using pure Java language plus Objectivity/DB ODBMS as a

persistence mechanism. To realize run-time software dependency recording, the AspectJ

language extension [2] has been used.

The implementation consists of two main areas. The first is a generic GUI-based

metadata repository. The repository is based on the proposed flat metadata structure. It

allows for definition of arbitrary metamodel in terms of allowed combinations of

metaobject kinds, meta-relationships and meta-attributes describing metaobjects of

particular type. This task is realized using an application named “Metamodel Manager”.

After defining such a metamodel it is possible use another application – “Model

Manager” – to create model, which is stored within the flattened structure and respects

the constraints introduced by the metamodel.

The second area provides an example of flattened metamodel, applying the

approach to the subset of Objectivity/DB schema structure. In this case metamodel is

determined and model is extracted from specified, populated Objectivity database. Thus

the GUI-based functionality is limited to a metadata viewer. Moreover, the

Objectivity/DB metamodel has been extended to store the software dependency

information, which in current implementation can be extracted automatically during

application runtime (e.g. in application testing phase).

22 Unfortunately, this fact makes the benefits of flattening the metamodel less significant. As will be
shown the flat metamodel is value-oriented, which makes it less convenient to handle within the chosen
implementation environment (ODBMS using Java binding). The tasks like object lookup based on values
of its properties or checking the conditions requiring navigational access would be much easier to perform
using a query language.

www.manaraa.com

– 92 –

Implementation description presented here is structured as follows. Two parts

distinguished above are presented separately. Each part starts with a summary of

externally available functionality and a description of its user interface (if applicable).

Later, the high-level description of implemented classes and their functionality is

provided.

5.1 Flattened metamodel – conceptual view

The suggested structure of flattened metamodel has already been presented in the

previous chapter. The diagram presented there has been included (with subtle change) in

this section (Fig. 20) to describe the starting point of this implementation.

MetaObject

 name : string
 kind : string

MetaValue

 value : string

MetaAttribute

 name : string*

*describedElements

descriptors

MetaRelationship

 name : string

*

connections

*

target connectedElement

{ordered}

Fig. 20. Conceptual view of the flattened metamodel assumed during implementation

The only change introduced into this diagram is the usage of association class

(see [41]) to denote meta-value. This notation indicates that the implementation does

not support multivalued meta-attributes. Database design will provide the names of

introduced metaobject. In contrast, the possible values of remaining attributes shown

here (together with constraints on their combinations) come from a specific metamodel

definition. Since the former activity depends on the latter, the “Metamodel Manager”

functionality will be described first.

www.manaraa.com

– 93 –

5.2 Metamodel manager

This application allows to define metamodel-specific properties that are not

contained within the flat structure. This information supports the modeler’s work by in

the following ways:

• New metaobjects are given (at creation time) a set of properties (slots for the meta-

attributes’ values) according to meta-attributes the metamodel designer defined to

describe the metaobject kind chosen.

• It is possible to select the kind of created metaobject only from the list of kinds

defined in metamodel. The same holds for names of meta-relationships.

• Moreover, one can create only meta-relationships, whose origin and target

metaobjects kinds have been allowed for a given meta-relationship.23 Like previous,

this constraint is supported by GUI, whose lists and combo-boxes used during

metaobject edition show only elements that respect the defined constraints.

• Fore more specific constraints it is possible to designate a class with special

interface, whose validate(MetaObject) method would check constraints specific to a

given metaobject kind (e.g. checking the rule that meta-attribute isAbstract of

metaobject Class24 must have either a value “true” or “false” and that in the latter

case none of metaobjects Operation connected to it may have the isAbstract

attribute value set to “true”) or to a given meta-relationship name (e.g. that the

specializes meta-relationships do not create loops).

Thus, because with an empty metamodel definition, the following mechanism

would prevent from creating any metaobject, the Metamodel Manager is the first step in

the usage scenario of this software.

User interface and functionality of Metamodel Manager

Since the whole metamodel implementation presented here uses Objectivity/DB

as a persistence layer, a federated database of that DBMS must be created first. The

application requires to specify the path to a federated database before any other

23 E.g. metamodel definition may define that the generalizes meta-relationship can connect meta-object of
kind Class with metaobject of kind Class or metaobject of kind Interface with metaobject of kind
Interface.
24 That is, metaobject, whose kind equals ”Class”.

www.manaraa.com

– 94 –

function can be invoked. Within the chosen federated database a database named

SchemaDB is opened and created and within it the container MetamodelCont is

accessed in an analogous way. If some elements of metamodel have previously been

defined, they are read from the database, and the user interface elements are populated

with them (Fig. 21).

Fig. 21. Metamodel Manager window – the “Metaobject kinds” tag

The application window consists of three tags. The first of them, called

“Metaobject kinds” provides the following functionality:

• Creation of a new metaobject kind or removal of an existing metaobject kind (the

latter is possible if a given kind has no instances).

• Creation of a new metaobject kind as a specialization of already defined kind. New

metaobject kind is given all the properties (that is – assigned meta-attributes) that

the chosen (prototype) kind possess. New allowed combinations25 of meta-object

kinds connected by meta-relationships are created, to let the new kind appear in all

25 More precisely, it is a combination of meta-relationship name with an ordered pair of metaobject kind
names. For brevity however, the less precise term “metaobject kind combination” will be used for the rest
of this work.

www.manaraa.com

– 95 –

meta-relationships that accept the prototype kind at the given end. For simplicity,

the original kind is a prototype rather than generalization, since after the specializing

kind is created, both kinds can be modified independently. In other words the

generalization link is not maintained between two such kind definitions.

• Assignment of previously defined meta-attribute as a property describing the

selected metaobject kind or removal of such meta-attribute from the list of

properties of a given metaobject kind.

• Assignment of a validator class dedicated for checking specific constraints

connected with a given metaobject kind. This is realized by providing a package

name-qualified name of a Java class. Application checks if a class of the name

provided is available and if it implements the MetaObjectValidationMethod

interface.

Fig. 22. Metamodel Manager window – the “Meta-attribute” tag

The next tab titled “Meta-attributes” (Fig. 22) allows for adding and removing

meta-attributes. A meta-attribute cannot be removed if it is currently used as a property

www.manaraa.com

– 96 –

of one of more metaobject kinds. To check this, a manually invoked functionality lists

the metaobject kinds a selected meta-attribute is used by. It is thus the reverse side of

relationship between metamodel kind and meta-attribute used in the previous tab and it

is added here for convenience. Instead of browsing all metaobject kinds in the first tab,

one can quickly locate usage of selected meta-attribute and to remove it from the list of

properties of referenced metaobject kinds.

Fig. 23. Metamodel Manager window – “Meta-relationships” tag

The last tag, called “Meta-relationships” (Fig. 23), is provided to manage the

meta-relationship descriptions. It offers the following functionality:

• Addition / removal of meta-relationship name.26 The latter will not be allowed if

meta-relationships of a given name exist in the model.

• Addition / removal of metaobject kind source<->target pairs allowed for selected

meta-relationship name.

26 In fact this could be called kind, since a meta-relationship’s name is of the same nature as a kind of
metaobject.

www.manaraa.com

– 97 –

Fig. 24. Reverse relationship name-choice dialog

• Pairing mutually reverse meta-relationship names (see Fig. 24; both meta-

relationships names have to be defined earlier). In contrast to the specializing

metaobject kind, which is creation time-only shortcut, the information on reverse

meta-relationship names is kept and the allowed metaobject kind combinations for

both of them are maintained accordingly to this paring.

• Setting validator class dedicated to a given meta-relationship name (analogously

like in case of metaobject validator class. In this case the selected class has to

implement the MetaRelationshipValidationMethod interface).

Probably it would be also useful to introduce one more tag that would show the

allowed meta-relationship in a metaobject kind-centric way, thus showing the names of

meta-relationship applicable to selected metaobject kind.

Implementation classes of Metamodel Manager

The user interface layer has been separated from the rest of the project. This is

reflected in the fact that all GUI-related classes are located in a separate package called

ui.metamodel. Since they represent a conventional usage of standard Java GUI library,

their description is limited to the screenshots and associated summary located in the

“user functionality” subsections of this chapter. The rest of the classes constituting the

application are located in metadataRep.metamodelManager package.

The central non-UI class of Metamodel Manager is MetamodelDictionary. It is

responsible for establishing and closing connection with selected federated database as

well as for handling any requests concerning querying or modifying metamodel

www.manaraa.com

– 98 –

definition. For cooperating with Model Manager, the interface MetamodelAdvisor of

MetamodelDictionary is used. The functionality of this interface is narrowed to read-

only operations that are used to provide hints and validity checks during model edition

(as described in the next section). It supports the following operations:

• Getting an array of defined metaobject kinds;

• Getting an array of metaobject kind pairs, describing the combinations allowed for

selected meta relationship name (provided as a method parameter);

• Getting an array of meta-relationship names that accept the selected metaobject kind

as an origin.

• Getting an array of metaobject kinds that are allowed as a target of meta-relationship

of the selected name, coming from a meta-object of the selected kind;

• Refreshing the pool of defined metaobject validator and meta-relationship validator

classes;

• Providing the database session object to allow Model Manager to access database

after successful initialization.

Moreover, MetamodelAdvisor inherits from two other interfaces:

MetaObjectValidator and MetaRelationshipValidator. Thus every validation request

from metaobject or meta-relationship comes to MetamodelDictionary and is dispatched

there: the kind of requesting metaobject or the name of requesting meta-relationship is

checked, and validation method of the class assigned as its validator is invoked. If a

given metaobject kind or meta-relationship has no validator, the result of validation is

assumed to be successful and appropriate value is returned to the caller.

The rest of functionality, available only if explicitly referring

MetamodelDictionary, consists of the following operations:

• Creating/removing meta-attribute names;

• Creating/removing metaobject kind definitions;

• Creating/removing meta-relationship definitions;

• Assigning/canceling selected meta-attribute as a property of selected metaobject

kind;

www.manaraa.com

– 99 –

• Getting an array of the names of meta-attributes being the properties of selected

metaobject kind;

• Allowing/denying a selected pair of metaobject kind to be connected by selected

meta-relationship; checking if a given combination is allowed;

• Cloning metaobject kind definition as a specialization of an existing one;

• Getting/setting the names of metaobject- and meta-relationship validation classes;

• Checking if a given metaobject kind is defined within metamodel;

• Checking if a given meta-relationship name is defined within metamodel;

• Checking if a meta-attribute of a given name is defined;

• Getting an array of names of metaobject kind using a meta-attribute of selected

name;

• Paring mutually reverse meta-relationship names;

• Assigning a name of validator class for selected metaobject kind;

• Assigning a name of validator class for selected meta-relationship name.

-attributes : String[*]
-moValidationClassName : String

MetaObjectKindDescription

-mrValidationClassName : String

MetaRelationshipDescription

MoKindCombination

1

-allowedCombinations*

-target

1

*

-source1

*

MetamodelDictionary

-metaRelDesc0..1

metaRelName : String

Fig. 25. Metamodel-defining classes for the implementation of the flattened metamodel
(UML diagram)

www.manaraa.com

– 100 –

Fig. 25 shows the class structure used to store data necessary for the above

functionality. Although it is very simple, significant complexity of specific well-

formedness rules may be hidden within the validating code. However, this problem may

be effectively reduced in presence of a full-featured query language to manipulate

metadata, as it would allow for a clear, declarative formulation of those constraints.

5.3 Model Manager

Having defined a metamodel makes it possible to use another application – Model

Manager, to create model that would be stored within the flattened metamodel structure

described at the beginning of this chapter. The application realizes the following

functionality:

• Browsing/creating/removing the instances of the selected metaobject kind;

• Performing validation of selected metaobject, meta-relationship or the whole model;

• Browsing the validation report and navigation to the elements where inconsistencies

were found;

• Updating the values of meta-attributes of selected metaobject;

• Creating or removing meta-relationships originating at selected object;

• Navigation along meta-relationships to other meta-objects.

User interface and functionality of Model Manager

To access model, one needs, like in case of Metamodel Manager, to specify the

federated database to work with. Since the metadata-updating features of Model

Manager require access to the read-only functionality of Metamodel Manager (through

the abovementioned MetamodelAdvisor interface), the latter is also prepared during this

initialization.

www.manaraa.com

– 101 –

Fig. 26. Model Manager window – the “Properties” tag

The central concept of this application is metaobject, thus all features (despite the

whole model validation command) depend on the current selection of metaobject. The

metaobjects are grouped according to their kind: selecting a kind name from the

“Choose kind” combo list (see Fig. 26) results in showing all instances of that kind.

Without selecting particular meta-object from the “Instances” table, it is possible to

perform the following:

• Creation of a new meta-object of the kind determined by the current selection in the

“Choose kind” combo;

• Validation of the whole model (that is, all metaobjects and all meta-relationships);

• Browsing the report from the above action.

Selecting a particular metaobject allows to:

• Perform an individual validation;

• Remove metaobject;

www.manaraa.com

– 102 –

• Update metaobject’s properties (that is – values of meta-attributes applicable to this

kind of a metaobject – see Fig. 26).

Fig. 27: Model Manager window – the “Owned meta-relationships” tag

Moreover, the 2-nd and 3-rd tag (“Owned meta-relationships” and “Dependent

meta-relationships”) allow to edit meta-relationships that are connected to the selected

metaobject as appropriately its origin or its target (see Fig. 27 and Fig. 28).

Selecting particular owned meta-relationship allows to:

• Remove that meta-relationship;

• Validate it;

• Or to navigate to the target metaobject of this meta-relationship.

For convenience, the first and third of above options are available also in the

“backward” direction (see Fig. 28), that is for the meta-relationships for which the

selected meta-object is a target rather than an owner.

www.manaraa.com

– 103 –

Fig. 28. Model Manager window – the “Dependent meta-relationships” tag

Fig. 29. Model Manager– the “Establish new meta-relationships” dialog

www.manaraa.com

– 104 –

The “Owned meta-relationships” tag allows also for creating new meta-

relationships. Thanks to the access to metamodel definition, the dialog dedicated to this

option limits the possible selection to allowed combinations of metaobject kinds (Fig.

29). At the first stage it requires to select the meta-relationship name from among of

meta-relationships the selected metaobject can own. Then, the “Choose target” list is

being filled only with metaobjects, whose kinds are allowed as targets for the selected

[owner-kind <–> meta-relationship name] combination.

Implementation classes of Model Manager

The implementation of Model Manager is based on the flattened metamodel

structure, whose conceptual design was presented at the beginning of this chapter. Since

it was assumed that both the meta-attribute and the meta-value are represented by just a

single name, this structure was further reduced to only two project-specific classes:

MetaObject and MetaRelationship. Fig. 30 shows practically complete interface of

those classes, as well as their private attributes. Taking into account that majority of

those methods are trivial and are included just to realize encapsulation, the structure

may be classified as being very simple. In addition to those two classes the package

metadataRep.metamodel also defined two interfaces: MetaObjectValidator and

MetaRelationshipValidator used to connect metadata with validator classes defined by a

metamodel designer.

The properties of metaobject are stored within a map (dictionary) structure, where

the meta-attribute names are stored as keys and the strings representing meta-values

form the value entries. The references to MetaObjectValidator and

MetaRelationshipValidator are of class scope and in the current implementation lead to

single MetamodelDictionary object. The responsibilities of MetaObjectValidator are the

following:

• Validating the provided metaobject;

• Checking if a metaobject kind of the name provided exists;

• Providing a list of meta-attributes assigned to selected metaobject kind.

To realize the first of abovementioned tasks it is necessary for the validator to:

1. Check the kind of the provided metaobject.

www.manaraa.com

– 105 –

2. Lookup the appropriate metaobject kind description.

3. Locate an object of class, which was designated as a validation code for that
metaobject kind.

4. Forward the validate(MetaObject) message to that object.

Taking into account that the metaobject kind check and dispatching of the validate

method are encapsulated within the MetamodelDictionary class, the validation

invocation scenario is quite simple, as shown in Fig. 31.

+MetaObject(in n : String, in k : String, in v : MetaObjectValidator)
+allProperties() : [] []String
+getAllOwnedLinks() : []MetaRelationship
+getAllOwnedLinksOfType(in name : String) : []MetaRelationship
+getAllReverseLinks() : []MetaRelationship
+getKind() : String
+getName() : String
+getProperty(in attr : String) : String
+hasDefined(in attr : String) : boolean
+setUpProperties()
+setValidator(in v : MetaObjectValidator)
+isValidated() : boolean
+validate() : MetamodelErrorDescription
+updateProperty(in attr : String, in val : String)
+addRelationship(in mr : MetaRelationship)
+removeRelationship(in mr : MetaRelationship)

-name : String
-kind : String
-validated : boolean

MetaObject

String

-metaValue

0..1

metaAttr : String

+createMetaRelationship(in name : String, in from : MetaObject, in to : MetaObject) : MetaRelationship
+direct(in mo : MetaObject)
+getName() : String
+getSource() : MetaObject
+getTarget() : MetaObject
+remove()
+setValidator(in v : MetaRelationshipValidator)
+isValidated() : boolean
+validate() : MetamodelErrorDescription

-leftName : String
-rightName : String
-leftValidator : MetaRelationshipValidator
-rightValidator : MetaRelationshipValidator
-direction : int = 0

MetaRelationship

2

-ownedRelationships*

-right1

**

-left 1

MetaObject
Validator

MetaRelationship
Validator

{ordered}

Fig. 30. The implementation of the flattened metamodel

www.manaraa.com

– 106 –

The functionality of MetaRelationshipValidator is similar and consists of the

following functions:

• Checking if a meta-relationship of the selected name is defined within metamodel;

• Validating the provided meta-relationship;

• Getting the name of relationship reverse to the one provided;

• Checking if the provided combination of meta-relationship name and a pair of

metaobject kind names is allowed to instantiate.

Dispatch
encapsulated within
MetadataDictionary

tested:M etaObject

u:User

dict:M etamodelDictionary validator:M etaObjectValidationM ethodkindDesc:M etaObjectKindDescript ion

validate()

M etamodelErrorDescription

validate(this)

M etamodelErrorDescript ion

getKind()

kind
lookupKindDesc(kind)

kindDesc
validate(tested)

M etamodelErrorDescription

validate(tested)

M etamodelErrorDescript ion

Fig. 31. Invoking metaobject validation – a UML sequence diagram

As already mentioned, the dependencies between model and metamodel have to

be bidirectional, and this remark seem to be of more general nature than just an

implementational assumption made here. The diagram summarizing the dependencies

of core concepts of this metamodel implementation is shown in Fig. 32. Note that the

metamodel package is independent on any other package.

www.manaraa.com

– 107 –

MetaObjec
t Validator

MetaRelationshi
p Validator

Metamode
l Advisor

MetamodelDictionary

ModelManager
ModelAdviso

r

MetaRelationshi
p

MetaObject

metamodel package metamodelManager
package

Fig. 32. Class diagram showing dependencies among core elements of the implemented
metamodel

5.4 Database Analyzer

This part of implementation is a command-line application, designed to extract a

schema of Objectivity/DB ODBMS into the flat metamodel structure. Since Java

programmer’s interface of this DBMS does not provide a direct access to its schema

repository, the reflective capabilities of Java language were used to extract the metadata.

The main drawback of this solution is that the persistence-capable class that is

registered in the schema needs either to have at least one instance within the database or

to be referenced by other persistence-capable class that has at least one instance.

Otherwise such class would not be found by Database Analyzer. Taking into account

the typical Objectivity for Java usage scenario (see chapter 2), this limitation does not

seem to be severe.

With presence of the metamodel and model implementations described above

with programming interface to access them, the realization of Database Analyzer is

quite obvious and thus it will not be described here. Note also that since the metamodel

is in this case fully determined by the Objectivity/DB architecture and Java object

model, there will be no need to edit the metamodel definition stored within

MetamodelDictionary (appropriate definitions are hard-coded in the initializing part of

Database Analyzer). Similarly, the need to define metaobject and meta-relationship

www.manaraa.com

– 108 –

validators would be significantly reduced, since the metadata being extracted comes

from compiled Java classes.27

Despite those facts the application is interesting, because of realizing a reasonably

complete metamodel using the postulated flattened metadata structure. Moreover, the

below description of Objectivity for Java metamodel shows, how the presented

approach can address the contradictory requirements of expressiveness (desired for its

descriptive role) and simplicity (implementational requirements). This is thanks to the

fact that the expressive UML style of metamodel definition can be mapped into the

flattened form in a very straightforward way, as described in the previous chapter.

name

PersistCapable_Class

name
persistent

Attribute

primitName

PrimitiveType Array

Type

paramOf

*

contents

1

multiplicity

Relationship

reverse1

*

target1

*

owner

1

association*
attribute

*

staticOwner 0..1

instance*
type

1

name

PCCs_Operation

parametricUsage*

parameterType

*

name
ID

Database

name
ID

Container

name

Root

1

*

namedRoot

*

location

0..1

operation

*

operOwner

1

rootInstance*

class1
specialization * generalization0..1

Fig. 33. Conceptual view of a simplified Objectivity for Java metamodel

27 However, such checking elements can still be useful to enforce some more subtle properties of the
design style.

www.manaraa.com

– 109 –

The structure presented in Fig. 33 does not address all properties the selected

DBMS supports. The following metadata kinds are considered in that simplified

metamodel:

• All types used in definition of database classes (referred here as Persistence-

Capable Classes – PCC), including built-in primitive types (in their Java binding

name), arrays of different types (including multidimensional arrays) and finally

PCCs (both predefined, like e.g. persistent collections, and application-defined

ones).

• All attributes of each PCC, including transient ones.

• All bi-directional relationships between PCCs (more sophisticated, integrity-

assuring substitute for plain object-referencing attributes).

• All operations defined for each PCC.

• All databases contained in the analyzed federated database and containers they

consist of.

• Database root variables declaration: their names and references to PCCs they are

instances of (both global roots – of federation scope, and local – defined for

particular database).

The presented elements are the most important ones and all of them can be

extracted using a combination of API operations provided in Java binding and (mainly)

– the Java’s reflection mechanism.

As already mentioned, the described module was necessary due to the fact that the

Objectivity/DB schema is manipulated only internally by the DBMS. That is – metadata

is not available to a programmer in a way analogous to regular data stored within

database.28 Taking into account various responsibilities of database metadata discussed

in this work and especially the usefulness of custom or vendor-specific extensions to a

metadata contents, such solution can be considered as a drawback. Despite positive

aspects (e.g. simpler programmer’s interface and easily achieved protection of schema

against illegal updates), this can be considered as a factor limiting the DBMS

28 Other options for extracting Objectivity schema contents were parsing “schema dump” in a form of a
regular text file or resorting to the Active Schema feature available as an extension of the C++ binding
[32].

www.manaraa.com

– 110 –

functionality. Therefore, the most general postulate of this work should state that

database metadata should be an extensible structure, directly available to programmer

through the means analogous to those supporting regular data.

5.5 Dependency Discoverer

Having access to metadata structure (in our case the metadata extracted by

Database Analyzer will be used), it is possible to extend it towards addressing of

various additional features. As stated in the previous chapter, one of such tasks is the

support for software configuration management in the area of database schema

evolution, and this feature was implemented as an example of database metadata

extension.

Metamodel extensions

According to the postulates from the previous chapter, the aim of this

implementation is to collect information on broadly understood backward dependencies

on database schema. This means the need to identify all procedural units accessing

database together with specification of the kind of this access. Particular kinds of

database access worth distinguishing are specific to a given data model, technology or

even product. In case of Objectivity/DB Java binding, the following dependency kinds

were identified:

• Operation call dependency (concerns calls of operations of PCCs from within any

other methods).

• Side-effect dependencies (direct access to database objects’ attributes). The read-

only (RO) and read-write (RW) access kinds are distinguished.

• Root-lookup dependencies (method’s attempt to bind a particular name of a root

variable).

• Local (that is container- or database-scope) scans for database objects of particular

class. This is a way of acquiring object references alternative to using root

variables.29

29 This operation accepts only a class name as a scan criterion. Another version of the scan(..) operation
allows to specify simple predicates (in a form of string) to narrow the selection based on attribute values.

www.manaraa.com

– 111 –

PersistCapable_Class

name
persistent

Attribute

primitName

PrimitiveType Array

Type

paramOf

*

contents

1

multiplicity

Relationship

reverse1

*

target1

*

owner

1

association*

attribute

*

staticOwner

0..1

instance*

type

1
PCCs_Operation parametricUsage

*

parameterType

*

name
ID

Database

name [0..1]
ID

Container

name

Root

1

*

namedRoot

*

location

0..1

operation

*

operOwner

1

rootInstance*

class1

specialization *

generalization

0..1
name

Operation

name

Class

Fig. 34. Objectivity for Java metamodel prepared for defining external dependencies on DB
schema

To support abovementioned information, the first step was a modification of a

metamodel from Fig. 33 to incorporate elements identifying non-persistent application

classes, together with those of their methods that access elements of database schema.

Thus the appropriate metamodel concepts (that is, Persistence-Capable Class (PCC)

and PCCs Operation) were generalized to cover external application elements (that is,

Class and Operation) – see Fig. 34.

With these minor adjustment made, the support for schema dependency

information requires only few additional associations (see Fig. 35):

Assuming that such selection could be the only case of usage of a given PCC’s attribute by an external
method, it seems valuable to consider extracting also the parameter names used in predicate.

www.manaraa.com

– 112 –

• Read-only and read-write dependencies between operations and non-local attributes;

• Call dependency between operation and PCCs operation.

• Lookup dependency between operation and root variable.

• Scan dependency between operation and a storage object (database or container),

concerning instances of particular class. This is conceptually a tertiary association,

decomposed for implementation into a class (Scan) and three binary associations.

-name
-persistent

Attribute

PersistCapable_Class

attribute

*

staticOwner 0..1

-name

Root

lookupDepOperation

*

lookupDpndncy*

-name
-ID

Database

namedRoot*

location0..1

-name [0..1]
-ID

Container

1

*

PCCs_Operation
callDpndncy

*

caller *

dynOwner0..1

parameter*

RW_Dpndncy

*

RW_DepOperation

*

RO_DepOperation

*

RO_Dpndncy *

entryPoint

*

rootContents

1

-name

StorageObj

SO_DepOperation *

ScanDpndncy*

Scan

scanSubject1

scanningCase *

scanLocation 1

scanner

*

-name

Operation

Fig. 35. Dependency-tracking elements of the Objectivity for Java metamodel

Collecting the dependency information

From among of possible ways of collecting the information on database

dependencies, a variant of solution sketched in the previous chapter has been applied.

That is, dependencies are detected and recorded during application testing and reflective

capabilities are used to identify the caller. Due to architecture of Objectivity/DB, the

mechanism registering dependencies is not a DBMS extension. Instead, it is (rather

loosely) connected with applications’ code, using aspect-oriented programming (AOP)

Java extension (AspectJ [2]).

www.manaraa.com

– 113 –

The problem was divided into two tasks: monitoring of currently executing

methods and detecting any non local (that is – coming from another class) calls to

database objects. The simplest solution of the former task, used in this implementation,

is following:

• Defining pointcuts to intercept the start and the end of method’s execution.

• Implementation of a stack of method description objects.

• Reflective extraction of method’s signature at the moment of its invocation and

pushing that data on the stack.

• Popping the method’s description at the moment when its execution terminates.

This solution allowed to illustrate the idea using simple exemplary applications.

However, it is not universal, taking into account a multiple-threaded execution model.30

Nevertheless, these limitations can be easily removed and they do not affect the

feasibility of presented solution in the Objectivity for Java environment.

The second task required introducing further pointcuts:

• Direct read / direct write of an attribute of database object.

• Call of an operation on a database object.

• Call of the lookup(String name) operation on a database or federation object (used to

access a root object).

• Call of the scan(String className, …) operation.

Each occurrence of one of the above conditions triggers the following actions:

• Reading the top element of the executing methods’ description stack;

• Lookup of that description within schema;

• If necessary – addition of the method description to the schema;

• Creating the appropriate association between method’s description and schema

element.

30 This problem can be observed even in simple application, when the toString() operation (supported by
any Java object) is invoked by GUI mechanism during form refreshing.

www.manaraa.com

– 114 –

For performance reasons and conceptual clarity it is assumed that a complete

schema description has been extracted by Database Analyzer prior to running the

Dependency Discoverer feature.

5.6 Model Browser

This application provides a subset of the Model Manager functionality to allow

for easier browsing of existing models. Evaluating this application can be interesting as

a test for expressiveness or just the readability of the postulated flattened metamodel

when manipulated by programmer.31 This is because the browser preserves the inherent

genericity of this approach, not trying to adjust the representation according to

metaobject’s kind or meta-relationship’s name. Thus, all metaobjects are shown in a

uniform way, as a composition of properties (metaobject – meta-value pairs and meta-

relationships owned by a given metaobject) and allow navigation along their meta-

relationships (Fig. 36).

Fig. 36. Model Browser window

31 Only programmer or database administrator is supposed to deal directly with flattened metamodel
structure. Thanks to straightforward mapping between rich UML-like metamodel and its flattened form
the former can still be used for modeling and design as better suited for those tasks.

www.manaraa.com

– 115 –

5.7 Implementation: encountered problems, remarks and
conclusions

The implementation was realized using a pure, commercially available ODBMS

that is – in an environment closely related to the one assumed by the ODMG standard,

which was the starting point of this research.

The advantages of this environment are the close integration of DBMS

functionality with programming language and the ability to directly utilize the core

object-oriented constructs during implementation. On the other hand, the approach

assuming the use of general-purpose programming language as a database data

manipulation language, can be indeed considered controversial as being a relatively

low-level solution. Despite the fact the ODMG standard defines an object query

language OQL, its role, even within the standard definition, can be considered

secondary. Moreover, a very limited interest of vendors in developing the OQL support

into their products aggravates that trend.

Lack of (powerful enough) declarative means of selecting and modifying objects,

made the implementation of the flattened metamodel less convenient. This is because

that metamodel structure is strongly value-oriented; that is, the treatment of each

element depends on its state (e.g. kind = “Interface”) rather than on its type. Of course,

this also leads to using generic means of manipulating the metadata, which is also rather

against the ODMG metamodel philosophy.

Another assumption of the Objectivity/DB DBMS is an extremely decentralized

distribution model. One of assumptions connected with this approach (and represented

by the ODMG standard as well), was moving all the processing (together with a whole

definition of object’s behavior) onto the application side. Although this may result in a

simpler architecture, lack of methods stored within a database may become in some

cases very unnatural. This is because some operations serve as means to maintain

consistency rules inherent to a given model definition rather that as an adjustable

external interface. Consider for example situation where the same objects stored in a

persistent collection are accessed by two applications written in different programming

languages (e.g. Java and C++). Both applications need to provide their own code

implementing all used operations of database objects. This is not only redundant but

also inconsistency-prone solution. E.g. the comparator operations needed to maintain

www.manaraa.com

– 116 –

order in sorted collections may corrupt data if their implementations in both

applications are not compliant.

Practical usage of the flattened metadata structure in Database Analyzer and

Dependency Discoverer features proves its usability. However, it is clear that

implementation could be realized in a more convenient way if a query language to

manipulate metadata were available.

The realization of the dependency-tracking mechanism shows the importance of

the extensibility concerning both database mechanisms as well as an externally

accessible and extensible database metadata structure. The features serving to identify

procedural unit accessing database proved to be highly dependent on a programming

language. Structural and behavioral reflection also became necessary. This also

exemplifies the problems connected with multi-language direct access to an ODBMS.

www.manaraa.com

– 117 –

6 Conclusions and future work

The goal of this work was the investigation of the required features of a

metamodel for ODBMS in the context of existing standardization efforts, particularly,

the ODMG standard. The analysis showed a number of issues with the existing ODMG

metamodel definition, which need to be solved, as well as some new requirements, not

considered in the original standard at all.

6.1 ODBMS metamodel roles and suggested solutions

Probably the most broadly known object-oriented metamodel is the metamodel

definition from the UML standard. This specification exemplifies the descriptive role of

a metamodel: it is needed to properly and precisely understand the meaning of a given

language’s or tool’s constructs, their interrelations, constraints and intended usage.

Despite its informal and meta-circular32 style, the UML metamodel is quite

successful in providing such description. Thus it seems to be acceptable to define the

ODBMS metamodel in a very similar style.33 This would be sufficient especially

considering, that in case of a DBMS the metamodel concepts are related to a storage

model and to a query language semantics, which make them more precise.

Another role of a DBMS metamodel is related to the fact, that it constitutes a

foundation to implement a database schema repository, necessary for various DBMS

operations. Such repository stores also physical data structure information, privacy and

security information and other data that may be needed for optimization. All this

information needs to be incorporated in a way that guarantees a good performance,

since such metadata is expected to be accessed very frequently. Those kinds of

metadata, that need to be explicitly used by a programmer, should be accessible through

a simple and efficient interface. Both these requirements speak in favor of employing a

metadata structure much simpler than the one assumed by the ODMG.

32 As already mentioned, the UML definition is recursive. The term “meta-circular” means that the
language definition is provided using a specially chosen subset of its own basic elements, which is called
the UML core.
33 Due to the popularity of the UML and MOF standards, the subset of UML could be a good choice as
the basic mean to describe an ODBMS metamodel proposal.

www.manaraa.com

– 118 –

The most obvious example of the need of making the database metadata

externally available is the generic programming through reflection, which proved to be

a very useful technique. The comparison with specifications of CORBA Interface

Repository or Dynamic SQL [9] shows, that the current ODMG standard lacks some

elements necessary to guarantee true portability of generic database applications.

Moreover, there are various requirements indicating the need of further extensions

to the metamodel. One important source of such changes would be future additions of

new conceptual modeling notions. An example would be the dynamic object role

concept, whose influence on the considered database metamodel has been discussed

here. Other, even more certain source of the future metamodel extensions would be the

incorporation of important DBMS features, not considered in the current ODMG

proposal. As suggested e.g. in [46], the most necessary subject of standardization would

be a view mechanism and stored behavior (in the form of database procedures or

perhaps also a kind of active rule mechanism).

Apart from abovementioned conventional database responsibilities, new

metadata-related features should be considered. One example is support for SCM,

assuming storage of database-related software dependencies within the schema

repository. The integration and interoperability of independently developed systems

requires much more meta-information that the data structure description stored

traditionally in the schema. Thus, another important feature would be RDF-style

descriptions to express database’s ontology.

As can be seen from the above summary, the database metamodel has to deal with

a very large number of various kinds of metadata, being at the same time well prepared

for efficient implementation in a form of a schema repository, as well as for future

evolution and custom extensions. For those reasons, a radically simplified (“flattened”)

metamodel to use for the implementation and manipulation of a schema repository has

been proposed. This “lightweight” solution provides the level of flexibility and

extensibility comparable with the traditional four-level metalevel architecture. On the

other hand, to support expressiveness, the conceptual view of the proposed metamodel

has been described in the UML style, and the simple rules of mapping it to the flattened

form were provided.

www.manaraa.com

– 119 –

Since the flattened metamodel structure differs significantly from the existing

proposals in this area, the prototype implementation of a schema repository based on it

has been realized. Although less expressive when directly drawn as a UML diagram, the

flattened structure proved to be convenient for metadata manipulation. To provide a

practical example, the flattened metamodel has been used to express the Objectivity/DB

ODBMS schema elements. This served to provide a working illustration of another idea

presented in this work that is, extending the DBMS schema to support the SCM through

storing software dependency information.

6.2 Future work

Although this work attempts to provide a complete overview of the roles an

ODBMS metamodel has to fulfill, many of suggested improvements and solutions

require further research in order to provide a more specific proposal. The most

important areas requiring a detailed solution include:

• The view mechanism, allowing, as far as possible, to treat the virtual objects as if

they was regular objects. Thus the view definition need to be described as a fully-

fledged sub-schema, including virtual objects’ classes, their properties etc.

• Behavioral elements, including stored database procedures and active rules.

• Security mechanisms, standardized as a DBMS feature rather than some

externally-defined facility.

• Database distribution and interoperability, which requires to explicitly deal with

e.g. the site concept within a metamodel, in order to unambiguously identify and

partition schema definitions and data sources.

The realization of postulated new features of database metamodel requires further

investigation, e.g. in order to answer the following questions:

• What level of customizability and support for the separation of concerns principle

needs to be provided to a database designer?

• How to standardize the vocabulary for the DB schema-based resource description

system? To what extent it can be based on or unified with the RDF specification?

www.manaraa.com

– 120 –

• What is the optimum way to collect the software dependency information

concerning database, in order to store it within the schema?

Any proposal concerning database metamodel should respect as far as possible the

established standards, their notions and existing vocabulary. Thus it was assumed here

that the conceptual view of proposed metamodel features should be described using

UML/MOF and their mapping into the flattened form (used for schema implementation

and metadata manipulation) should be provided. The same style of description is

intended to be used for future more detailed solutions of above outlined problems.

Although the metadata repository implemented and described in this work

allowed to test some of the presented ideas, many details discussed here can be

investigated only in presence of a fully-fledged ODBMS prototype. This concerns e.g.

using a query language for metadata manipulation. Assuming the flattened metamodel,

this seems to be very promising for simplifying a database metadata management,

which is the main goal of this research.

On the other hand, the proposed flattened metamodel can be, thanks to its inherent

flexibility, very well prepared for experimenting with different detailed solutions during

the development of a prototype ODBMS.

www.manaraa.com

– 121 –

7 Bibliography

[1] S. R. Alpert. Primitive Types Considered Harmful. Java Report, November, 1998
(Vol. 3, No 11).

[2] AspectJ project website: http://aspectj.org

[3] C.Bachman, M.Daya. The Role Concept in Data Models. Proc. of the 3rd VLDB
Conf., Tokyo, pp.464-476 1977.

[4] J. Banerjee, H. Chou, J. Garza, W. Kim, D. Woelk, N. Ballou. Data Model Issues
for Object-Oriented Applications. ACM Transactions for Office Information
Systems, April 1987.

[5] G. Booch, I. Jacobson, J. Rumbaugh. The Unified Modeling Language User
Guide. Addison-Wesley 1998.

[6] S. Brandt, R. W. Schmidt. The Design of a Metalevel Architecture for the Beta
Language. In Advances in Object-Oriented Metalevel Architectures and
Reflection, CRC Press 1996.

[7] A. B. Chaudhri, R. Zicari. Succeeding with Object Databases. Wiley 2001.

[8] K. T. Claypool, J. Jin, E. A. Rundensteiner. OQL SERF: An ODMG
Implementation of the Template­Based Schema Evolution Framework. In Centre
for Advanced Studies Conference, 1998, 108-122.

[9] C. J. Date, H. Darwen. A Guide to the SQL Standard. Addison-Wesley 1997.

[10] DB4o – Database for Objects website: http://www.db4o.com

[11] Dublin Core Metadata Element Set, Version 1.1. http://dublincore.org/documents/

[12] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[13] F. Ferrandina, S.-E. Lautemann. An Integrated Approach to Schema Evolution for
Object Databases. OOIS 1996, 280-294.

[14] I. R. Forman, S. H. Danforth. Putting Metaclasses to Work. Addison-Wesley
1999.

[15] M. Fowler. Dealing with Roles. http://www.martinfowler.com/ (an update to:
Analysis Patterns: Reusable Object Models. Addison-Wesley 1996).

[16] R. Geisler, M. Klar and S. Mann. Precise UML Semantics Through Formal
Metamodeling. Proceedings of the OOPSLA’98 Workshop on Formalizing UML,
1998.

[17] I. A. Goralwalla, D. Szafron, M. T. Özsu, R. J. Peters. A Temporal Approach to
Managing Schema Evolution in Object Database Systems. DKE 28(1), 1998, 73-
105.

[18] G. Gottlob, M. Schrefl, B. Rock. Extending Object-Oriented Systems With Roles.
ACM Transactions on Information Systems, pp. 268-296, 1996.

[19] P. Harmon. The Reinvention of the Omg. In: Distributed Enterprise Architecture,
vol. 5 no. 1 / 2002.

www.manaraa.com

– 122 –

[20] P. Harmon. The OMG’s Model Driven Architecture. In: Component Development
Strategies, vol. XII No. 1, January 2002 (available from http://www.omg.org).

[21] ICONS (Intelligent CONtent Management System) website:
http://www.icons.rodan.pl/

[22] IEEE Guide to Software Configuration Management, ANSI/IEEE Std 1042-1987.

[23] IEEE Standard Glossary of Software Engineering Technology, ANSI/IEEE Std
610.12-1990.

[24] IEEE Standard for Software Configuration Management Plans. ANSI/IEEE Std
828 – 1990.

[25] ISO/IEC 12207. Information Technology - Software LifeCycle Processes.
ISO/IEC Copyright Office, Geneva, Switzerland, 1995.

[26] SO/IEC TR 15846:1998 Information technology - Software life cycle processes -
Configuration Management.

[27] Java Data Object (JDO) Specification. Version 1.0. Sun Microsystems 2002.

[28] A. Jodlowski, P. Habela, J. Plodzien, K. Subieta: Objects and Roles in the Stack-
Based Approach. DEXA 2002: 514-523.

[29] D. Kambur, M. Roantree: Using Stored Behaviour in Object-Oriented Databases.
EFIS 2001: 61-69.

[30] G. Kiczales, J. Lamping, A. Mendhekar, Ch. Maeda, C. Videira Lopes, J.-M.
Loingtier, J. Irwin: Aspect-Oriented Programming. ECOOP 1997: 220-242.

[31] W. Kim. Observations on the ODMG-93 Proposal for an Object-Oriented
Database Language. ACM SIGMOD Record, 23(1), 1994, 4-9.

[32] Objectivity/C++ Active Schema, Release 7.0. Objectivity, Inc. 2001.

[33] Objectivity for Java Programmer’s Guide, Release 7.0. Objectivity, Inc. 2001.

[34] R. G. G. Cattell, D. K. Barry: The Object Data Standard: ODMG 3.0. Morgan
Kaufmann 2000.

[35] Object Management Group: The Common Object Request Broker: Architecture
and Specification. Version 3.0, July 2002 [http://www.omg.org].

[36] Object Management Group: Common Warehouse Metamodel (CWM)
Specification. Version 1.0, October 2001 [http://www.omg.org].

[37] Object Management Group: UML Profile for Enterprise Distributed Object
Computing Specification. Version 1.0, October 2001 [http://www.omg.org].

[38] Object Management Group: Model Driven Architecture (MDA). July 2001 (draft)
[http://www.omg.org].

[39] Object Management Group: Meta Object Facility (MOF) Specification. February
2002 [http://www.omg.org].

[40] Object Management Group: Security Service Specification. Version 1.8, March
2002 [http://www.omg.org].

[41] Object Management Group: Unified Modeling Language (UML) Specification.
Version 1.4, September 2001 [http://www.omg.org].

www.manaraa.com

– 123 –

[42] Object Management Group: OMG XML Metadata Interchange (XMI)
Specification. Version 1.2, January 2002 [http://www.omg.org].

[43] R. J. Peters, M. T. Özsu. An Axiomatic Model of Dynamic Schema Evolution in
Objectbase Systems. TODS 22(1), 1997 75-114.

[44] J. Plodzien, K. Subieta: Applying Low-Level Query Optimization Techniques by
Rewriting. DEXA 2001: 867-876.

[45] Y.-G. Ra, E. A. Rundensteiner. A Transparent Object-Oriented Schema Change
Approach Using View Evolution. ICDE, 1995, 165-172.

[46] M. Roantree, J. Murphy and W. Hasselbring. The OASIS Multidatabase
Prototype. ACM Sigmod Record, 28:1, March 1999.

[47] M. Roantree, K. Subieta: Generic Applications for Object-Oriented Databases.
OOIS 2002: 53-59.

[48] D. Slama, J. Garbis, P. Russell. Enterprise CORBA. Prentice Hall PTR, 1999.

[49] F. Steimann: A Radical Revision of UML's Role Concept. UML 2000: 194-209.

[50] F. Steimann: On the representation of roles in object-oriented and conceptual
modelling. DKE 35(1): 83-106 (2000).

[51] H. Su, K. T. Claypool, E. A. Rundensteiner. Extending the Object Query
Language for Transparent Metadata Access. Database Schema Evolution and
Meta-Modeling, 9th Intl. Workshop on Foundations of Models and Languages for
Data and Objects, 2000, Springer LNCS 2065, 2001 182-201.

[52] K. Subieta, C. Beeri, F. Matthes, J. W. Schmidt: A Stack-Based Approach to
Query Languages. East/West Database Workshop 1994: 159-180.

[53] K. Subieta, M. Missala: Semantics of Query Languages for the Entity-
Relationship Model. ER 1986: 197-216.

[54] K. Subieta: Object-Oriented Standards: Can ODMG OQL be Extented to a
Programming Language? CODAS 1996: 459-468.

[55] K. Subieta. Object-Oriented Standards. Can ODMG OQL Be Extended to a
Programming Language? Proc. of International Symposium on Cooperative
Database Systems, Kyoto, Japan, December 1996. In: Cooperative Databases and
Applications, World Scientific, 1997, 459-468.

[56] K. Subieta. Mapping Heterogenous Ontologies through Object Views. Proc. of 3-
rd Workshop Engineering Federated Information Systems (EFIS 2000), Dublin,
IOS Press, June 2000, 1-10.

[57] K. Subieta, M. Missala, K. Anacki. The LOQIS System, Description and
Programmer Manual. Institute of Computer Science Polish Academy of Sciences
Report 695, 1990.

[58] M. Tresch, M. H. Scholl. Meta Object Management and its Application to
Database Evolution. ER 1992, 299-321.

[59] R. K. Wong, H. L. Chau, F. H. Lochovsky. A Data Model and Semantics of
Objects with Dynamic Roles. Proc. of Intl. Conf. on Data Engineering, 1997.

www.manaraa.com

– 124 –

[60] The World Wide Web Consortium. Resource Description Framework (RDF)
Model and Syntax Specification. February 1999 [http://w3.org].

[61] The World Wide Web Consortium. RDF Vocabulary Description Language 1.0:
RDF Schema. November 2002 (working draft) [http://w3.org].

[62] The World Wide Web Consortium. Extensible Markup Language (XML) 1.0.
October 2000 [http://w3.org].

[63] The World Wide Web Consortium. XML Schema Part 0: Primer. May 2001
[http://w3.org].

www.manaraa.com

– 125 –

8 Appendices

A. Abbreviations

AOP Aspect-Oriented Programming
CORBA Common Object-Request Broker Architecture
CVS Concurrent Versioning System
CWM Common Warehouse Metamodel
DC Dublin Core [Metadata Element Set]
DII Dynamic Invocation Interface
DBMS Database Management System
DOI Digital Object Identifier
DSI Dynamic Skeleton Interface
DTD Document Type Definition
EJB Enterprise Java Bean
GUI Graphical User Interface
IDL Interface Definition Language
IIOP Internet Inter-ORB Protocol
IR Interface Repository
MDA Model Driven Architecture
MLI Meta Level Interception
MOF Meta Object Facility
OASIS ODMG Architectures for the Specification of Interoperable Systems
OCL Object Constraint Language
ODBMS Object-Oriented Database Management System
ODL Object Definition Language
ODMG Object Data Management Group
OLAP On-Line Analytical Processing
OMG Object Management Group
OMT Object Modeling Technique
OOSE Object-Oriented Software Engineering
OQL Object Query Language
PCC Persistence-Capable Class
SCI Software Configuration Item
SCM Software Configuration Management
UI User Interface
UML Unified Modeling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
XMI XML Metadata Interchange
XML eXtensible Markup Language

www.manaraa.com

– 126 –

B. Objectivity for Java simplified metamodel elements

This appendix presents the complete set of metaobject kinds and meta-relationship

names used to express the necessary elements of the Objectivity/DB metamodel (as

expressed in Fig. 34 and Fig. 35) in the flattened form. Since the well-formedness of the

extracted schema is guaranteed by the mechanisms of the Objectivity/DB DBMS, there

was no need to implement the appropriate constraints to verify it. The presented data is

included within the Database Analyzer code and is registered into the database before

starting the schema analysis of the provided database.

First the flat metamodel definition for Objectivity/DB is presented from the point

of view of particular metaobject kinds. An asterix (*) preceding a meta-relationship

name or a metaobject kind indicates, it is an extension introduced to store the

dependency information rather than a part of the original Objectivity/DB schema. The

further part of this appendix enumerates the defined meta-relationship names together

with metaobject kind combinations allowed to be connected by them.

External Operation
Kind *External Operation
Meta-attributes -
Owned meta-relationships
kinds

Call Dependency -> PCs Operation
Operation Owner -> *External Class
To Parameter -> Parameter
Return Type -> PC Class
Return Type -> External Class
Return Type -> Array
Return Type -> Primitive Type
*RO Dependency -> Attribute
*RW Dependency -> Attribute
*Scan Dependency -> Scan
*Lookup Dependency -> Root
*Call Dependency -> PCs Operation

Constraints Exactly one Operation Owner

www.manaraa.com

– 127 –

PCCs Operation
Kind PCCs Operation
Meta-attributes -
Owned meta-relationships
kinds

Call Dependency -> PCCs Operation
Operation Owner -> PC Class
To Parameter -> Parameter
Return Type -> PC Class
Return Type -> *External Class
Return Type -> Array
Return Type -> Primitive Type
*Caller Operation -> *External Operation
*Caller Operation -> PCCs Operation
*RO Dependency -> Attribute
*RW Dependency -> Attribute
*Scan Dependency -> Scan
*Lookup Dependency -> Root
*Call Dependency -> PCs Operation

Constraints Exactly one Operation Owner

External Class
Kind *External Class
Meta-attributes -
Owned meta-relationships
kinds

Dynamic Property -> *External Operation
Instance -> Parameter
Instance -> Attribute

Constraints -

PC Class
Kind PC Class
Meta-attributes -
Owned meta-relationships
kinds

Dynamic Property -> PCCs Operation
Owned Relationship -> Relationship
To Attribute -> Attribute
Entry Point -> Root
Instance -> Attribute
Instance -> Parameter
Superclass -> PC Class
Subclass -> PC Class
*Scanning Case -> Scan

Constraints -

www.manaraa.com

– 128 –

Scan
Kind *Scan
Meta-attributes Formula
Owned meta-relationships
kinds

*Scan Location -> Database
*Scan Location -> Container
*Scan Subject -> PC Class
*Scan Dependent Operation -> External Operation
*Scan Dependent Operation -> PCs Operation

Constraints -

Attribute
Kind Attribute
Meta-attributes -
Owned meta-relationships
kinds

Type -> PC Class
Type -> Primitive Type
Type -> Array
Type -> *External Class
Attribute Owner -> PC Class
*RO Dependent Operation -> External Operation
*RO Dependent Operation -> PCs Operation
*RW Dependent Operation -> External Operation
*RW Dependent Operation -> PCs Operation

Constraints -

Parameter
Kind Parameter
Meta-attributes Position
Owned meta-relationships
kinds

Type -> PC Class
Type -> *External Class
Type -> Primitive Type
Type -> Array
Parameter Owner -> PCs Operation
Parameter Owner -> *External Operation

Constraints -

Relationship
Kind Relationship
Meta-attributes Multiplicity
Owned meta-relationships
kinds

Origin -> PC Class
Target -> PC Class
Reverse Relationship -> Relationship

Constraints Exactly one reverse rel.: symmetrical, non recursive

www.manaraa.com

– 129 –

Primitive Type
Kind Primitive Type
Meta-attributes -
Owned meta-relationships
kinds

Instance -> Attribute
Instance -> Parameter
Parametrized Array -> Array

Constraints -

Array
Kind Array
Meta-attributes -
Owned meta-relationships
kinds

Contents -> Primitive Type
Contents -> Array
Contents -> *External Class
Contents -> PC Class

Constraints -

Database
Kind Database
Meta-attributes ID
Owned meta-relationships
kinds

Component -> Container
Maintained Root Name -> Root
*Scanner -> *Scan

Constraints -

Container
Kind Container
Meta-attributes ID
Owned meta-relationships
kinds

Composition -> Database
*Scanner -> *Scan

Constraints -

Root
Kind Root
Meta-attributes -
Owned meta-relationships
kinds

Location -> Database
Contents Type -> PC Class
*Lookup Dependent Operation -> *External Operation
*Lookup Dependent Operation -> *External Operation

Constraints Maximum one location.
Exactly one Type (is obligatory).

www.manaraa.com

– 130 –

Meta-Relationships

Call Dependency (External Operation -> PCCs Operation)
(PCCs Operation -> PCCs Operation)

+REVERSE

Caller (PCCs Operation -> PCCs Operation)
(PCCs Operation -> External Operation)

Operation Owner (External Operation -> External Class)
(PCCs Operation -> PCCs Class)

+REVERSE

Dynamic Property (External Class -> External Operation)
(PCCs Class -> PCCs Operation)

Owned Relationship (PC Class -> Relationship)

+REVERSE

Origin (Relationship -> PC Class)

Target (Relationship -> PC Class)

(NO REVERSE)

Reverse Relationship (Relationship -> Relationship)

(NO REVERSE)

To Attribute (PC Class -> Attribute)

+REVERSE

Attribute Owner (Attribute -> PC Class)

To Parameter (PCs Operation -> Parameter)
 (External Operation) -> Parameter)

+REVERSE

Parameter Owner (Parameter -> PCs Operation)
(Parameter -> External Operation)

www.manaraa.com

– 131 –

Type (Attribute -> PC Class)
(Attribute -> Array)
(Attribute -> Primitive Type)
(Attribute -> External Class)
(Parameter -> PC Class)
(Parameter -> External Class)
(Parameter -> Array)
(Parameter -> Primitive Type)

 +REVERSE

Instance (PC Class -> Attribute)
(Array -> Attribute)
(Primitive type -> Attribute)
(External Class -> Attribute)
(PC Class -> Parameter)
(External Class -> Parameter)
(Array -> Parameter)
(Primitive type -> Parameter)

Return Type (External Operation -> PC Class)
(External Operation -> Array)
(External Operation -> Primitive Type)
(External Operation -> External Class)
(PCCs Operation -> External Class)
(PCCs Operation -> PC Class)
(PCCs Operation -> Array)
(PCCs Operation -> Primitive Type)

 +REVERSE

Returning Operation (PC Class -> External Operation)
(External Class -> External Operation)
(Array -> External Operation)
(Primitive type -> External Operation)
(PC Class -> PCCs Operation)
(External Class -> PCCs Operation)
(Array -> PCCs Operation)
(Primitive type -> PCCs Operation)

www.manaraa.com

– 132 –

Contents (Array -> Primitive Type)
(Array -> Array)
(Array -> External Class)
(Array -> PC Class)

(+REVERSE)

Parametrized Array (Primitive Type -> Array)
(Array -> Array)
(External Class -> Array)
(PC Class -> Array)

Composition (Container -> Database)

(+REVERSE)

Component (Database -> Container)

Maintained Root Name (Database -> Root)

(+REVERSE)

Location (Root -> Database)

Entry Point (PC Class -> Root)

(+REVERSE)

Contents Type (Root -> PC Class)

*RO Dependency (*External Operation -> Attribute)
(PCs Operation -> Attribute)

(+REVERSE)

*RO Dependent Operation (Attribute -> External Operation)
(Attribute -> PCs Operation)

*RW Dependency (*External Operation -> Attribute)
(PCs Operation -> Attribute)

(+REVERSE)

*RW Dependent Operation (Attribute -> External Operation)
(Attribute -> PCs Operation)

www.manaraa.com

– 133 –

*Lookup Dependency (External Operation -> Root)
(PCs Operation -> Root)

(+REVERSE)

*Lookup Dependent Operation (Root -> External Operation)
(Root -> PCs Operation)

*Scan Dependency (External Operation -> Scan)
(PCs Operation -> Scan)

(+REVERSE)

*Scan Dependent Operation (Scan -> External Operation)
(Scan -> PCs Operation)

*Scan Location (Scan -> Database)
(Scan -> Container)

(+REVERSE)

*Scanner (Database -> Scan)
(Container -> Scan)

www.manaraa.com

– 134 –

C. Test cases for Database Analyzer and Dependency
Discoverer applications

This appendix describes two mini-applications that were used to test the

functioning of dependency-tracking mechanism. The aim was to provide a minimum

functionality needed to test the discovering of all distinguished kinds of dependencies

concerning database. Because of prototype character of all the software created in

connection with this work, it has not been tested very thoroughly. However, it was

possible to observe, that all kinds of dependencies intended to be tracked, can be easily

discovered without the need of changing original applications thanks to the use of the

AspectJ [2] language AOP capabilities.

+getName() : String
+getAddress() : Address
+setAddress(in cty : String, in str : String)

#name : String

Person

+getCity() : String
+setCity(in cty : String)
+getStreet() : String
+setStreet(in str : String)

#city : String
#street : String

Address

1

#persAddress

1

+getDepartment() : Department
+employ(in dept : Department)
+getSalary() : int
+setSalary(in sal : int)

#salary : int

Employee

+getEmployees() : Employee[]

#deptName : String

Department-employees

*

-workplace

1

«relationship»

Fig. 37. The persistence-capable classes defined for test applications “Address book”
and “Department-Employee” (a UML class diagram)

The persistence-capable classes defined for those applications and contained in a

separate Java package are presented using UML class diagram in Fig. 37. They

constitute a part of database schema information, the test applications depend on. All

other classes, that is those providing the GUI, as well as the main application classes,

are considered to be external to the database schema. The dependencies of interest are

those coming from either an external class or schema-defining class, with exception of

the calls local to a given class (e.g. between the getName() method in class Person and

its name attribute).

www.manaraa.com

– 135 –

Below the functionality of both applications is presented and annotated to

describe the mechanisms used intentionally to make all interesting dependency kinds

occur.

“Address Book” application

Fig. 38. The main window of the “Address book” test application

This application provides a GUI-based interface to manipulate the Person objects

and their Address properties (see Fig. 38). A person’s name is being set at object’s

creation time, when also an (initially empty) Address object, connected by a regular

reference is created for it. The Person objects can be added and removed. Their

addresses and names can be modified through a separate option. In effect, the following

dependency kinds occur in this application:

• Database lookup dependency: after opening the provided federated database, the

lookup of a database “People” occurs.

• Database scan dependency: the “People” database is scanned for the instances of

the class Person.

www.manaraa.com

– 136 –

• Persistent objects’ operation call: needed to retrieve the strings denoting person’s

name, as well as the city and street of its address, as well as to update those fields

(encapsulated by appropriate operations).

• Persistent objects’ direct access: for the sake of example, the functionality

allowing to modify a person’s name uses direct access to persistent object’s attribute

rather than a dedicated operation.

“Department – Employee” application

This application is provided to test proper extraction of some more specific

schema constructs used here, as well as another kind of dependency, not occurring in

the previous example. Similarly like the previous application, “Department-Employee”

uses a GUI interface to create / retrieve / update / delete its entities, which in this case

are objects of Department and Employee (inheriting from Person) classes. The

following functionality is provided (cf. Fig. 39):

• Adding and removing departments and the ability to select them and browse their

employees.

• Adding employees (with default salary) to the selected department and removing

them.

• Updating the employee’s salary.

• Reassigning an employee to another defined department.

In case of the removal of non-empty department, a new pseudo-department, called

“UNNASSIGNED” is created and bound within the “Persons” database as a named root

object (of the name “UNASSIGNED”), in order to make the employees of removed

department still available.

www.manaraa.com

– 137 –

Fig. 39. The main window of the “Department-Employee” test application

Moreover, as can be seen in Fig. 37, Employees are connected with Departments

using the ODBMS relationship mechanism rather than a plain reference. Another

schema construct not occurring in the first application is the root object, registered

within the scope of the “Persons” database.

Summing up, the following dependency kinds are expected to be discovered

during testing of this application:

• Database lookup dependency – as in case of the first application.

• Database scan dependency – scan for the “Department” class instances.

• Persistent object’s operation call – the most common kind of dependency,

similarly like in the first application.

• Root object lookup: lookup of the Department class root object called

“UNASSIGNED”, performed within the scope of the “Persons” database.

www.manaraa.com

– 138 –

D. List of figures

FIG. 1. A FRAGMENT (CA 20%) OF UML METAMODEL, INCLUDING THE CORE LANGUAGE ELEMENTS. 18
FIG. 2. ILLUSTRATION OF THE FOUR-LAYER METADATA ARCHITECTURE (BASED ON FIG. 2-1 FROM [39]). .. 20
FIG. 3. A SEGMENT (CA.25%) OF THE ODMG METAMODEL.. 28
FIG. 4. RDF SCHEMA CONCEPTS DEPICTED USING UML CLASS DIAGRAM. ... 35
FIG. 5. THE CONTAINMENT HIERARCHY OF THE OBJECTIVITY/DB DATA STRUCTURES. 37
FIG. 6. ORIGINAL AND FLATTENED ODMG CONCEPTS. .. 61
FIG. 7. CONCEPTS OF THE FLATTENED METAMODEL ... 61
FIG. 8. A SIMPLE ODL SCHEMA .. 61
FIG. 9. A METAMODEL INSTANCE: THE USAGE OF META-ATTRIBUTES ... 62
FIG. 10. A METAMODEL INSTANCE: THE USAGE OF META-RELATIONSHIPS .. 63
FIG. 11. THE DEPENDENCIES BETWEEN METAMODEL (M2) AND THE OBJECT STORAGE MODEL................... 65
FIG. 12. CONCEPTUAL VIEW OF THE PROPOSED METAMODEL.. 66
FIG. 13. A FRAGMENT OF THE PROPOSED METAMODEL, WITH THE DEPENDENCY MANAGEMENT CONSTRUCTS

INCLUDED.. 73
FIG. 14. AN EXEMPLARY FRAGMENT OF THE DBMS SCHEMA, CONTAINING THE SIDE EFFECT DEPENDENCY

INFORMATION FOR AN EXTERNAL PROCEDURE UPDATEPRICES .. 75
FIG. 15. ROLE CONCEPT INCORPORATED INTO CONCEPTUAL METAMODEL (UPDATED FRAGMENT OF FIG. 12).

.. 83
FIG. 16. FRAGMENT OF THE PROPOSED METAMODEL, INTRODUCING TWO KINDS OF DYNAMIC OBJECT ROLE

DEFINITIONS .. 84
FIG. 17. EXAMPLES OF DIFFERENT KINDS OF ROLE DEPENDENCY, INTRODUCING EXEMPLARY NOTATION TO

DISTINGUISH THEM .. 85
FIG. 18. SIMPLIFIED SOLUTION OF INTRODUCING THE DYNAMIC ROLE CONCEPT INTO THE METAMODEL 86
FIG. 19. DYNAMIC ROLE MECHANISM USED IN THE METAMODEL TO DEFINE DERIVED INTERFACES OF A

CLASS .. 87
FIG. 20. CONCEPTUAL VIEW OF THE FLATTENED METAMODEL ASSUMED DURING IMPLEMENTATION. 92
FIG. 21. METAMODEL MANAGER WINDOW – THE “METAOBJECT KINDS” TAG.. 94
FIG. 22. METAMODEL MANAGER WINDOW – THE “META-ATTRIBUTE” TAG. .. 95
FIG. 23. METAMODEL MANAGER WINDOW – “META-RELATIONSHIPS” TAG. .. 96
FIG. 24. REVERSE RELATIONSHIP NAME-CHOICE DIALOG. ... 97
FIG. 25. METAMODEL-DEFINING CLASSES FOR THE IMPLEMENTATION OF THE FLATTENED METAMODEL

(UML DIAGRAM). ... 99
FIG. 26. MODEL MANAGER WINDOW – THE “PROPERTIES” TAG. .. 101
FIG. 27: MODEL MANAGER WINDOW – THE “OWNED META-RELATIONSHIPS” TAG. 102
FIG. 28. MODEL MANAGER WINDOW – THE “DEPENDENT META-RELATIONSHIPS” TAG............................ 103
FIG. 29. MODEL MANAGER– THE “ESTABLISH NEW META-RELATIONSHIPS” DIALOG. 103
FIG. 30. THE IMPLEMENTATION OF THE FLATTENED METAMODEL. ... 105
FIG. 31. INVOKING METAOBJECT VALIDATION – A UML SEQUENCE DIAGRAM. .. 106
FIG. 32. CLASS DIAGRAM SHOWING DEPENDENCIES AMONG CORE ELEMENTS OF THE IMPLEMENTED

METAMODEL. .. 107
FIG. 33. CONCEPTUAL VIEW OF A SIMPLIFIED OBJECTIVITY FOR JAVA METAMODEL. 108
FIG. 34. OBJECTIVITY FOR JAVA METAMODEL PREPARED FOR DEFINING EXTERNAL DEPENDENCIES ON DB

SCHEMA... 111
FIG. 35. DEPENDENCY-TRACKING ELEMENTS OF THE OBJECTIVITY FOR JAVA METAMODEL..................... 112
FIG. 36. MODEL BROWSER WINDOW. .. 114
FIG. 37. THE PERSISTENCE-CAPABLE CLASSES DEFINED FOR TEST APPLICATIONS “ADDRESS BOOK” AND

“DEPARTMENT-EMPLOYEE” (A UML CLASS DIAGRAM).. 134
FIG. 38. THE MAIN WINDOW OF THE “ADDRESS BOOK” TEST APPLICATION... 135
FIG. 39. THE MAIN WINDOW OF THE “DEPARTMENT-EMPLOYEE” TEST APPLICATION. 137

