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Abstract. A database metamodel is inherent to every DBMS. Appropriate constructs 
reflect the declarations of data-definition and data-manipulation languages, and are 
necessary to implement the internal DBMS mechanisms. Particularly, a metamodel 
definition provides a base for implementation of database’s schema repository. However 
in object-oriented DBMS these notions are often treated implicitly or (as in case of 
ODMG standard) suffer from rather ad-hoc approach to their definition. This work is 
intended to show the importance of providing an explicit database metamodel definition 
that is both simple and extensible. The main roles of database metamodel have been 
enumerated. Since different responsibilities of database metamodel together with 
inherent complexity of object data model can easily lead to unacceptably complicated 
metamodel definition, the radically simplified, “flattened” form of metamodel structure is 
proposed. Moreover, the proposed solution assumes the usage of generic means to 
manipulate database metadata instead of a large set of narrowly specialize operations 
assumed by the ODMG standard. The prototype implementation of metadata repository 
is provided to prove the feasibility of the simplified metadata structure. To show the 
importance of metamodel extensibility, the database schema-based mechanism to support 
the configuration management of ODBMS application has been implemented over the 
flattened metamodel structure. A number of additional remarks, concerning future 
extensions to a database metamodel as well as its capability to accept custom extensions 
in the context of current challenges for database management systems, have been 
presented. 
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1 Introduction 

A definition of a metamodel for an object-oriented database management system 

(ODBMS) needs to be prepared to serve several different purposes. As the term meta 

suggests, it is a kind of database tool’s self-description and in fact one of important 

roles of a metamodel is to precisely explain the meaning and interrelationships of 

constructs and features provided by a DBMS. A model developed for a DBMS-based 

application constitutes a metadata that is stored within the schema. Metamodel, being a 

model of any such user model, determines a logical structure of the schema repository, 

and is internally used by the core DBMS mechanisms. The metamodel structure, 

together with metadata it describes should not be hidden inside a DBMS though. 

Convenient access to metadata and the ability to extend it with additional task-specific 

information may be of critical importance e.g. for supporting software configuration 

management or integration of heterogeneous data sources. Yet another issue is the 

dynamic nature of a database schema. This requires support for modifying schema, 

which, together with other actions necessary to maintain a database consistency needs to 

be described in terms of a metamodel. 

The object data model was proposed to better handle the complexity of today’s 

information systems, by providing a richer set of modeling constructs. On the other 

hand, it led to much more complex metamodel, which needs to define all introduced 

notions, and more effective approaches to managing the complexity of metadata itself 

are necessary. 

The rapid development of the Internet and the distributed systems technology in 

general, brings new challenge for database management systems. The interoperability 

and integration of databases requires means to precisely describe local resources as well 

as to map data representation to a commonly agreed format. Both these issues are highly 

relevant to a database metamodel. 

1.1 The role of a metalevel 

This section is intended to provide a closer look at the concept of metamodel as 

well as to explain the motivation behind explicit definition of such in DBMS. 
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The meaning of the term “meta” is relative and depends on the entities that are 

considered as regular objects. Two fundamental kinds of properties the meta-level 

possess can be distinguished concerning its subordinate entities. The first of them can 

be called ontological. In order to interpret objects properly (that allows to retrieve some 

information, modify data and / or verify integrity rules), the description of their 

structure, interfaces and the meaning of the properties they posses is needed. Since such 

description would in turn require the definition of the notions used to formulate it, 

further meta-levels can be necessary.1 There are several options for terminating such 

(potentially infinite) hierarchy. The highest level can be defined using the language with 

formally defined semantics [16]. Alternatively, the ambiguity may be minimized by 

“loop-backing” the definition of the highest meta-layer and / or by mapping it to 

concrete implementational structures. The second aspect of meta-level is of operational 

nature. It is assumed, that a metaobject has knowledge about its subordinate objects and 

is able to manipulate them. Thus it realizes a usually implicit control of the behavior of 

regular objects. 

As can be seen from the above outline, the metalevel describes issues inherent to 

all systems. However, its explicitness and accessibility may differ. The extent of the 

metalevel features determines the application’s ability to discover and modify facts both 

about available data structures as well as about its own behavior. 

Within the programming language domain, the metalevel has to provide the 

reflective capabilities, intended to support so-called separation of concerns.2 Such 

features have been classified into two general kinds: introspective and intercessory 

capabilities (see e.g. [6]). The former allow examining the structure and functionality of 

entities available during run time and using that information to dynamically construct 

requests. These features proved to be essential e.g. for development of generic database 

browsers or the tools providing transparent persistence for programming language 

objects (including many Java-based OODBMS, e.g. DB4o [10] or Objectivity for Java 

[33]). The latter (intercessory capabilities) mean the ability to intercept a behavior of 

                                                 
1 A very intuitive metaphor describing the mapping of this aspect of meta-modeling up the metalevel 
hierarchy found in [14]: the relations between an object and its class and a class and its metaclass can be 
compared to the dependencies between a cake and a form used to bake it and between the form and the 
dice used to produce the form. This understanding of the meta term will be assumed in this work in the 
sense, that the criteria of distinguishing metalevels will be the instance of relationships between elements. 
2 A more detailed discussion of this issue is provided in the further chapters. 
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interest and interwove separately defined routines that can be easily interchanged, and 

what the original code developer needn’t be aware of. Not all flavors of such 

functionality are qualified as reflective, as the term is more often associated with the 

former of mentioned kinds. For example the trigger / active rule mechanism is treated as 

a regular (that is – not reflective) feature. The intercessory capabilities constitute the 

inexplicable foundation for realizing the separation of concerns postulate though. 

It is necessary to note that the lack of support for the abovementioned reflective 

features from the programming language or database system, significantly complicates 

the development of software that requires such functionality. Practically, in such case 

the only choice to get access to metalevel is the use of preprocessor, which complicates 

the development process. 

It is rather intuitive that if a given reflective feature proves to be valuable in 

general-purpose programming language, its importance for DBMS is at least as big or 

even greater, because of the shift toward first-category constructs and demands for 

runtime flexibility that are specific to the DBMS. 

1.2 Database metamodel 

The domain where the term “metamodel” seems to be used most frequently is 

conceptual modeling [16]. Nowadays, the best known object-oriented metamodel is 

probably the Unified Modeling Language (UML) specification [41]. In that case the role 

of a metamodel is to describe concepts of modeling language and to standardize the 

well-formedness rules and the metadata interchange formats among tools. On the other 

hand, for a DBMS the most important aspect of metamodel becomes the way the 

metadata (and the regular data described by it) are structured and manipulated. 

Two important desired properties of DBMS motivate making their metamodel an 

explicit feature. Those are flexibility and interoperability. Flexibility would require 

features like: 

• support for generic programming through reflection; 

• ability to extend the metadata structure with custom constructs; 
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• intercessory capability, allowing to isolate certain aspects of behavior and to easily 

change their implementation, perhaps in the spirit of the Aspect Oriented 

Programming (AOP) [30]. 

Interoperability would concern integration and collaboration of heterogeneous 

databases. 

Thus the metadata need to be queried not only to discover the structure of the 

described data, but also to provide some hints concerning their meaning / interpretation. 

These two roles of metadata are usually referred as appropriately structural metadata 

and semantic metadata. 

As can be seen from the above requirements, the metamodel responsibilities are 

much broader than just the description of an employed data model. Thus it is practical 

to define a database metamodel as a description of all those database properties that are 

not dependent on a particular database state. Particularly, a metamodel implemented in 

a DBMS formally describes and stores the database schema, together with auxiliary data 

such as the physical location and organization of database files, optimization 

information, access rights as well as the integrity and security rules. 

Metamodels for relational systems are easy to manage due to the simplicity of the 

data structures implied by the relational model. In these systems, the metamodel is 

implemented as a collection of system tables storing entities such as: identifiers and 

names of relations stored in the database; identifiers and names of attributes (together 

with identifiers of relations they belong to); and so on. Thus while their features can 

provide important hint on the required properties of ODBMS metamodel, the designers 

of the latter have to be prepared to handle the inherent complexity of an object data 

model. As will be shown in further sections, this complexity could severely limit the 

usability of ODBMS. Such “metadata management nightmare” (term used in [31]) 

danger became one of the serious arguments against object databases. Fortunately, this 

complexity, although inevitable, can be managed effectively, thus making the additional 

cost of the more expressive data model reasonably low. 
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1.3 Motivation and scope 

The aim of this work was the identification and investigation of various 

requirements that a design of ODBMS metamodel has to consider. This research was 

performed in the context of object-oriented DBMS standardization efforts and thus is 

influenced especially by today’s commercially available technologies and existing 

standards related to the subject. Taking the ODMG (Object Data Management Group) 

ODBMS standard as a starting point, the characteristics and drawbacks of existing 

solutions exemplified by this specification have been discussed. The analysis is 

intended to provide a possibly complete overview of the issues that need to be 

addressed. Next, the necessary improvements to the described metamodel definition are 

proposed. The level of detail of proposed solutions differs, depending on the 

significance of underlying problem and the level of its awareness expressed in existing 

literature. The majority suggested improvements are of relatively general nature, as they 

are not intended to constitute a complete standard-like metamodel proposal. The aspects 

where the suggested solutions differ substantially from the current state of the art were 

illustrated by a prototype implementation of a generic schema repository, in order to 

prove their feasibility and usefulness. 

1.4 Results 

The result is a set of proposed additions and improvements to existing metamodel 

solutions, based on the analysis of various ODBMS metamodel roles. The following 

issues have been addressed: 

• A sufficiently precise and unambiguous description of DBMS constructs and 

supporting features, provided by a metamodel definition; 

• Suitability of a metamodel definition for its implementation as a part of a DBMS, 

guaranteeing good performance and intuitive access; 

• Ability of a metamodel definition to evolve as a result of additions or improvements 

in future versions of base specification or because of custom vendor- or domain-

specific extensions; 
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• The required constructs of a data model, supporting useful modeling abstractions 

and separation of concerns during design, and their integration into a metamodel 

definition; 

• The support of database schema for software configuration management 

mechanisms (especially in the context of a database schema evolution); 

• Metadata structure openness, allowing for extending it with descriptive information 

necessary to support the interoperability and integration of distributed databases. 

Moreover, a prototype implementation of a generic metadata repository has been 

implemented. The aim was to prove the feasibility of the least conventional of proposed 

solutions, namely the radically simplified (“flattened”) metamodel structure and the 

database schema-based utility to manage the software dependency information in the 

context of software configuration management. The following functionality has been 

implemented: 

• A metamodel definition tool, allowing to develop arbitrary metamodels using the 

flattened metamodel structure, in terms of metaobject and meta-relationship kinds, 

meta-attributes describing particular kinds of metaobjects and consistency rules 

connected with given metaobject or meta-relationship kinds. 

• A model management tool for defining models according to previously defined 

metamodels and for testing their consistency. 

• A model browser for convenient viewing of defined models. 

• An analysis utility allowing to extract an Objectivity/DB ODBMS schema into the 

simplified metamodel structure. 

• A dependency-tracking code (implemented in the form of a Java aspect – see [2]), 

which is intended to run during the testing phase of an Objectivity/DB application in 

order to detect all dependencies between the application and the database schema 

and to store it together with metadata extracted by the abovementioned analysis 

utility. 
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1.5 Methods and tools used in this work 

The starting point of the research presented in this work is the ODMG (Object 

Data Management Group) standard [34]. However, due to many drawbacks of that 

specification, it was not possible to keep the proposed metamodel compliant with the 

standard. Nevertheless, the proposed solutions are closely related to the original in the 

sense, that it depends on the established terminology and closely follows the object 

model known from the mainstream programming languages. 

Other important solutions that inspired the proposal presented here are the OMG 

(Object Management Group) specifications, especially the UML (Unified Modeling 

Language), MOF (Meta Object Facility) and CORBA (Common Object Request Broker 

Architecture). The conceptual view of the proposed metamodel has been presented in 

the form that guarantees it is OMG MOF-compliant, which allowed to avoid some 

ambiguities concerning the notation and terminology used. All of the abovementioned 

specifications have been briefly presented in the following chapter. 

The prototype implementation of a metadata repository has been realized using 

Java language and the Objectivity/DB ODBMS to provide persistency. The same 

environment served as an example for which a metamodel (in the form proposed by this 

work) has been developed and additional metadata-related features (supporting the 

software configuration management) have been implemented. The latter were realized 

using the AOP Java language extension, namely AspectJ [2]. The Objectivity/DB 

ODBMS and the AOP are described in the following chapter. Moreover, the motivation 

behind the AOP is presented and its influence on the ODBMS metamodel development 

is discussed. 

Another important solution that influenced this work is the stack-based approach 

to query languages [52]. Although not directly applied here, it substantiates a very 

important assumption: it is possible to efficiently develop an object-oriented, 

optimizable [44] query language, seamlessly incorporating a full algorithmic power and 

following the object relativism principle. Taking into account the commercial success of 

the SQL, this suggests, that the future research concerning object-oriented DBMSs 

should assume a more central role of a query language, comparing with the existing 

ODMG standard or today’s commercially available ODBMSs. Particularly, based on 

the above remarks, in this work it is assumed, that the DBMS metadata should be 



www.manaraa.com

– 8 – 

accessed and manipulated using an object-oriented query language provided with 

imperative constructs rather than through the general-purpose programming languages’ 

bindings. 

1.6 Organization 

The remainder of this work provides an overview of the related research and 

solutions as well as the requirements specific to DBMS metadata management. Based 

on this context, the proposal of a metamodel architecture and its core features is 

presented. The prototype implementation using Java and Objectivity/DB ODBMS is 

described.  

The text is organized as follows: chapter 2 provides an overview of the existing 

standards and tools directly or indirectly related to the issue of database metamodel; 

chapter 3 enumerates and later presents in detail the desired properties of such 

metamodel that are confronted with the existing solutions – especially the ODMG 

standard; chapter 4 describes the proposed solution and in chapter 5 the prototype 

implementation is presented. Chapter 6 provides some conclusions. Some additional 

details describing the prototype implementation are provided in appendices B and C. 
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2 Related research and solutions 

This chapter provides an overview of solutions relevant to the topic of object 

database metamodel definition. As can be seen, the chapter is dominated by the 

descriptions of standards and some mainstream tools. This is the consequence of the 

overall orientation of this work, which considers the issue of a metamodel in the context 

of standardization efforts, and attempts to suggest directions towards broadly acceptable 

and universal proposal. Thus it is desirable to base it, if not on existing technology and 

specification (which would be too limiting assumption), then at least on well known 

concepts and commonly used terminology. Another reason is that there are very few 

academic papers dealing directly with the issue investigated here. One prominent 

example of research focused on object metadata management and based on existing 

standard, namely the OASIS [46] project is briefly mentioned here. Some other papers, 

which are only partly relevant to the subject, are referenced in the next chapter. 

2.1 OMG CORBA – Object Model and Interface Repository 

CORBA (Common Object Request Broker Architecture), defined by the OMG 

(Object Management Group) consortium, remains one of the most prominent and 

mature standards in the area of middleware for interoperability of distributed systems’ 

elements, although recently it seems to be used less frequently, in favor of EJB and 

XML technologies [19]. Applying a standardized middleware to realize this task 

follows the well known rule of computing, saying that many complex design problems 

can be effectually solved through introduction of an additional level of indirection. In 

case of distributed systems, the broker mechanism as such additional element, which 

allows to raise the level of abstraction a developer deals with, making the design 

independent of the following factors: 

• hardware and operation system platforms of distributed system’s constituents; 

• server-object location; 

• client’s and server’s implementation languages and their internal representation.3 

                                                 
3 Note that in case of CORBA objects the terms client and server are relative to particular interaction. A 
given object can act as a server, providing functionality to its clients, while at the same time being 
dependent on a functionality of some other interfaces, thus acting as a client. 
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This allows CORBA-based solutions to successfully address the following tasks: 

• integration of heterogeneous systems; 

• easy evolution of deployment configuration, including scalability and load-

balancing; 

• interoperability of different broker implementations thanks to the use of common 

protocol (IIOP) built on top of TCP/IP; 

• ability of mutually independent development of the client and the server elements 

intended to cooperate in a distributed system. The only “common denominator” of 

both parts remains an abstract, programming language-independent interface 

definition. 

The lookup of object references, message passing, security, consistency and a 

number of other issues are supported by Common Object Services, also defined as parts 

of CORBA standard. 

The IDL object model 

What is the most important, the standard has established an architecture for 

cooperation of heterogeneous systems at the level of language-neutral object’s 

interfaces. Those interface declarations serve later to generate client’s and server’s code 

elements in the chosen implementation language (according to standard-defined 

language mappings). Those interfaces are defined using Interface Definition Language 

(IDL), which, in order to achieve a better conceptualization is based on an object data 

model. 

The IDL model, although programming language-neutral, is based on the main 

constructs of C++ language. This is of course advantageous, as it makes the mapping 

between IDL and today’s mainstream object oriented languages quite straightforward. 

The most important IDL concept is interface, which can specify features mapped 

into externally available properties of an object of the class that implements it. 

Inheritance among interface definitions is supported. The properties defined by an 
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interface can be operations and attributes and the types used to define their signatures 

can be of following kinds:4 

• primitive types, like  float, double, byte, string etc., mostly reusing the keywords 

known from the C++, whose standard-defined mapping leads usually to appropriate 

primitive types of particular programming language binding; 

• object types, described by interfaces, which are mapped into class definition in all 

languages supporting such a construct; 

• sequences of abovementioned types – parameterized type, which e.g. in Java is 

mapped into a static (typed) array; 

• structures (using the struct keyword) – a constructor for record-like structures 

borrowed from the C++ language; in Java it is mapped into a class;5 

• a generic any type, able to accommodate value of every IDL-defined type; it is 

useful e.g. in generic programming interfaces. 

Operation’s signature written in IDL can also specify exceptions that can be raised 

during execution of a given operation. Exceptions are also defined in IDL, where they 

can be specified together with their attributes, to additionally describe the exceptional 

situation if needed. 

It is necessary to note, that all the access to an object defined by the 

abovementioned declarations is realized through the remote invocation of operations. 

That is, only the operation calls, their parameters, non-object parameter values, 

exceptions and object references are passed by a broker between client and server. This 

means, that each attribute defined as a field in an interface specification is in fact 

realized by a pair of (overloaded) operations with the same name as the attribute: one 

(returning value of appropriate type) to read it and the other (with appropriate input 

parameter) to modify it. The difference is not purely technical: considering the cost of 

remote invocations and object reference passing, it can significantly impact the detailed 

design [48]. Assume an example where one, having access to remote object of type 

Department wants to change salary of one of its Employees named “Smith”. If the 

scenario was the following: 1) getting all references to Employee objects managed by a 

                                                 
4 Module declarations are also supported to provide namespaces for type declarations. 
5 Unions and arrays are also supported. 



www.manaraa.com

– 12 – 

given department; 2) invoking a name() operation on each of returned object references 

and comparing it with “Smith”; 3) updating the state of the found object, it would mean 

a significant overhead in terms of costly remote invocations and reference passing.6 The 

more pragmatic solution would be following: the Department interface provides 

operations getEmployeeNames(), returning a sequence of string values and 

getEmployee(string name), returning a reference to selected object. This illustrates, that 

requirements imposed by a distributed system may contradict some rules of object-

oriented design, when encapsulation, low coupling and more identity-oriented 

programming style are considered. 

To sum up, the Interface Definition Language provides basic object-oriented 

constructs, whose granularity, meaning and even syntax closely follow appropriate 

declarative elements of the mainstream object-oriented programming languages.  

Dynamic Invocation Interface and Dynamic Skeleton Interface 

The static invocation model mentioned above assumes that the code responsible 

for invoking and passing the requests to objects of particular interfaces is compiled into 

applications. Another mechanism, called Dynamic Invocation Interface (DII), allows for 

construction and execution of request without static (that is, compile-time) knowledge 

of accessed interfaces. This is provided through the following features, outlined here in 

the sequence they are usually used: 

• The create_request(..) operation is declared in standard-defined root interface 

Object, to create one-use request object connected with a given instance. This 

operation specifies the name of the target’s dynamically called operation and 

(optionally) a sequence of provided parameters (declared using the any type). The 

result is a Request type object, whose interface is described below. 

• The add_argument(..) operation of Request object can be optionally used, if 

parameters had not been provided at the request creation. All expected arguments 

need to be provided in a proper sequence. 

• The invoke(..) operation performs the created request, making available the return 

value of the invoked operation (if applicable), which is provided as an output 

                                                 
6 More recent “objects by value” specification can be helpful in certain conditions to avoid such 
overheads. 
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parameter of the create_request(..) operation. The delete() operation removes the 

used request object. 

• The send(..) and get_response(..) operation pair can be alternatively used for 

deferred synchronous calls. The latter can be used (if applicable) to return the result 

of the request (and to check for execution errors). The poll_response() operation 

allows to check, if the request has already been completed. 

• Additional operations (sendp(..) and prepare(..)) can be used for preparation of 

persistent requests (allowing for asynchronous calls), as well as for using a callback-

style asynchronous calls (sendc(..) operation). 

The obviously missing element is the reflective capability that would allow to 

extract metadata used later to create a dynamic request. This issue will be described in 

the following sub-section. 

The Dynamic Skeleton Interface (DSI) is a solution analogous to DII, but located 

on the side of interface implementation. Appropriate object can be dynamically 

registered as providing the implementation of particular interface. Such an object can 

then respond to requests using the information provided within a ServerRequest object, 

whose properties include the following: 

• A read-only operation identifier; 

• A list of parameters, allowing to read input parameters as well as to set the values of 

the output parameters; 

• Operations to set the result value or to raise an exception. 

Interface Repository 

The Interface Repository provides for the storage, distribution, and management 

of a collection of related objects’ interface definitions [35]. 

If the definition of a given object is not compiled into an application, in order to 

access such object it is necessary to extract appropriate interface specification. Apart 

from generic programming (as suggested above), such information may be necessary in 

a number of cases, e.g. to support inter-ORB object passing. The Interface Repository 

(IR) provides functionality to retrieve such information, that is, the specification 

analogous to the one provided with IDL declarations of registered interfaces.  The 
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repository provides operation to directly define new interfaces within it. Alternative 

ways of storing such definition include compilation of an IDL file or copying interface 

definition from another repository. 

With presence of a consistent Interface Repository it is possible to invoke on an 

object reference the reflective operation get_interface(). Similarly, like abovementioned 

create_request(..) operation, it is defined within the Object interface and thus available 

for all CORBA objects. 

Each interface definition has assigned its repository identifier, which allows to 

maintain the identity of such metadata in presence of multiple repositories. Version 

number of an interface is also stored, although the definition versioning is not supported 

by any additional mechanism nor semantics [35]. A particular interface definition can 

be located in three ways: 

• Directly from the ORB (e.g. through the mentioned get_interface() operation on 

Object); 

• By navigation through the module name spaces (that is, by name); 

• By lookup of a specific identifier (that is, by an ID, which may be useful to find a 

definition corresponding to another) [35]. 

With presence of full metadata manipulation functionality, the consistency of the 

repository presents a hard problem. Indeed, only the most obvious inconsistencies (like 

e.g. name conflict within one interface definition) can be immediately detected and 

reported. Thus, the flexibility allowing different means to directly update metadata is 

provided at the cost of leaving the consistency of a repository practically unprotected. 

Including recent standard’s metadata extensions towards the component model, 

the Interface Repository specification now consists of nearly 50 interfaces, which 

constitutes a really complex structure to be queried and manipulated by programmer. 

Moreover, it is assumed that further extensions (both defined by future standard’s 

versions as well as custom, domain- or tool-specific extensions of standard defined 

interfaces), would be introduced by specialization of existing definitions.7 

                                                 
7 As explicitly stated in the standard specification, the IR is intended to store additional interface-related 
information like e.g. debugging information, libraries of related connectivity code etc. [35]. 
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Despite significant complexity the community seems to accept the solution, as 

being a natural consequence of overall standard’s assumption, to provide a possibly 

direct support for a number of existing mainstream general-purpose programming 

languages. 

However, the programming against the Interface Repository is commonly 

perceived being very difficult or at least inconvenient. Since in case of database schema 

the analogous structures would constitute the core feature instead of auxiliary service, 

following the same style in construction of a database metamodel would be 

controversial. 

2.2 OMG UML 

The Unified Modeling Language (UML) provides a graphical notation for 

visualizing, specifying, constructing, and documenting the artifacts created at different 

phases a software development process [5],[41]. The language was defined as a 

unification of three most popular object-oriented software development methodologies 

(Booch Method – by Grady Booch, OOSE – by Ivar Jacobson and OMT – by James 

Rumbaugh) and soon accepted as a standard modeling language by the OMG, which 

allowed to overcome chaos that previously took place within the object-oriented 

modeling methods area. Moreover, the fact that UML, in contrast its predecessors, does 

not prescribe a particular development process, made it easier for this proposal to 

succeed. The UML is now considered as a dominant notation for software systems’ 

modeling and design. 

The language defines a rich number of notions together with graphical notation 

elements used to visualize them. The following kinds of diagrams are supported: 

• Use cases diagrams, used to express functionality of a given system or subsystem, 

together with external entities (called actors) that either expect particular 

functionality or contribute to it. 

• Class diagrams, used to model the structure of a system under design. Those 

diagrams constitute the central element of practically every design (including even 

business modeling), thus it is not surprising that this part of the language has been 

most precisely described. The assumed semantics of classes is strongly inspired by 
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Java and C++ language solutions. While this solution makes the UML well prepared 

for creating detailed design of software written with those languages, at the same 

time it may be perceived as a factor limiting a conceptual modeling as well as a 

design for less common implementation platforms. 

• Interaction diagrams exist in two forms: sequence diagrams and collaboration 

diagrams, both intended to show (from different viewpoints), how systems behavior 

is realized in terms of object interactions. 

• State diagrams allow modeling a behavior of an object of a given class or of a 

whole system from the point of view of the lifecycle of such object or system. 

• Activity diagrams that so far seem to be rather loosely connected with the rest of 

underlying model, serve as a general mean of visual description of e.g. method’s 

algorithm or a business process. 

• Component and deployment diagrams allow to illustrate appropriately the structure 

of implemented software and its target location within the physical deployment 

configuration. 

Moreover, to specify additional constraints not expressible by standard graphical 

notation elements, a precise declarative (and state-preserving) constraint language 

named OCL (Object Constraint Language) has been introduced. 

As it became clear, it is practically impossible to foresee and define all constructs 

and properties that could be required for such a wide area of application, the special 

language extensibility features have been defined. Thus the UML metamodel provides 

three kinds of supporting features that can be used to extend the metamodel: 

• Constraints allow to specify additional conditions, which could not be covered by 

applying standard constructs (e.g. available in UML class diagrams). 

• Tagged values are the tag-value pairs that can be added to a model element to 

provide additional information (e.g. author, version etc.). 

• Stereotypes are in fact the only element kind capable to extend the predefined 

metamodel. Stereotype is a mean of meta-classification, and in its simplest form it 

just marks a given instance of the metamodel element, e.g. class (stereotype 

definition requires specifying exactly one metamodel element as its base) to which 
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(including its descendants) a given stereotype is applicable. In its more sophisticated 

forms stereotype may extend metadata connected with a given element, by declaring 

tag values, that become effectively additional attributes describing model element. 

Similarly, the stereotype definition may contain constraints that would be imposed 

on every instance of a metamodel element the given stereotype is assigned to. 

Stereotypes defined to support particular problem domain (e.g. software-

development methodology or detailed design for particular implementation platform) 

may be provided as UML profiles, defined outside of the language’s specification. The 

concept is rather controversial, as it is defined in the UML metamodel together with the 

notions the stereotypes’ instances are supposed to extend/redefine. Thus every particular 

instance of stereotype appears one meta-level lower than the notion it redefines. 

Anyway, the presence of the notion clearly indicates the need to provide means for 

lightweight extensions of standardized metamodels. 

From the point of view of this work, the UML is especially interesting as the 

source of the most popular object-oriented metamodel, which provides quite a useful 

and expressive (although informal) definition of the meaning of the introduced language 

constructs. It is doubtful as to whether such a metamodel is a full description of UML 

semantics. This definitional style suffers from the ignotum per ignotum logical flaw 

(concepts are defined through undefined concepts; definitions have cycles but they are 

not recursive). The metamodel bears informal semantics through commonly understood 

natural language tokens and a semi-formal language. The formal data semantics of class 

diagrams can be expressed through a definition of the set of valid data (database) states 

and by mapping every UML class schema into a subset of the states [53]. Semantics of 

method specifications requires other formal approaches, e.g. the denotational model. 

Such a formal approach would radically reduce ambiguities concerning UML; however, 

due to the rich structure and variety of UML diagrams, the formal semantics presents a 

hard problem. Instead of using formal semantics, the UML metamodel presents an 

abstract syntax of data description statements, and various dependencies and constraints 

among introduced concepts. 

Apart from its descriptive role, the UML metamodel allows for definition and 

verification of consistency rules among the abovementioned different views of a 

modeled system. It also serves as a base for definition a metadata interchange format, 
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which is already standardized as a XML-based solution named XMI (XML Metadata 

Interchange) [42]. 
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Fig. 1. A fragment (ca 20%) of UML metamodel, including the core language elements 

The UML metamodel is fairly large, which is not a surprise concerning the 

multitude of different views supported by this language. Moreover, additional 

complexity results from the attempt to make the definition highly generic. Note for 
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example, that the Class concept, being a direct specialization of Classifier (shown in 

Fig. 1), has a hierarchy of four more general notions above it (that is, Classifier, 

Generalizable Element, Model Element and Element) and many of its properties are 

defined by them. Since a number of such features seem to be defined rather too high, 

the combinations of allowed properties need to be restricted in the subclasses, leading to 

extensive usage of additional constraints (formulated in OCL). 

2.3 Meta Object Facility 

Meta Object Facility (MOF) is an OMG specification, which “defines an abstract 

language and a framework for specifying, constructing, and managing technology 

neutral metamodels” [39]. It is thus intended to provide a common base in term of 

which other metamodels like UML, IDL, CWM and others (not necessarily limited to 

OMG standards) could be uniformly described. The effort is not limited to just a 

common conceptual base for meta-modeling, as the definition provides also a 

framework to implement arbitrary metadata repositories. 

To achieve this, another, higher meta-level was necessary, which led to 

application of the common four-layer approach to meta-modeling. Fig. 2, based on 

similar schema in [39], illustrates resulting metalevel hierarchy. 

Traditionally, a developer is able to define the model layer (M1 level in Fig. 2) for 

a given problem domain, to determine the structure, constraints and behavior of a data 

(M0) to be stored in considered system. Four-layer metadata architecture provides the 

additional flexibility, by allowing to define metamodel (M2) elements to be used during 

modeling. Metamodels are defined using constructs of meta-metamodel (M3), which 

constitutes an immutable definition defined by such modeling framework and hardwired 

into a code of tools that support it. 
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Fig. 2. Illustration of the four-layer metadata architecture (based on fig. 2-1 from [39]) 

The MOF defines an object-oriented modeling framework, which was 

intentionally made very similar to the UML metamodel. It is based of four main 

modeling concepts [39]: 

• Classes, which can be used to define metaobjects; 

• Associations, limited to binary ones, to model relationships between metaobjects; 

• Datatypes, to model other data (including primitive types); 

• Packages, to modularize the models. 

Moreover, similarly like in the UML, the constraint notion exists. However, the 

standard does not prescribe any particular constraint definition language, nor it defines 

the mechanisms or scenarios to enforce them. 

Of course, compared to UML, the MOF metamodel is significantly simplified for 

at least two reasons. Firstly, as it is limited to structural notions and secondly, because 

of the intent to directly implement those modeling constructs, which would be 

impractical in case of sophisticated concepts like e.g. n-ary associations. To realize it, 

the specification defines a standard mapping between models created using MOF 
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constructs and implementation platform like e.g. CORBA IDL interfaces (optionally 

also accompanied by a generated repository server code). 

In other words, using standard constructs of MOF (M3) one can generate 

interfaces (M2) to manipulate metadata (M1) on a given platform. It is of course 

possible to use the framework analogously at the lower level, to deal with regular data 

(M0), but the intended usage is the development of metamodels to build a universal 

repository (instead of using the MOF as a ultimate modeling language). 

The genericity of the specification is additionally strengthened by the reflective 

interfaces, allowing for proper interpretation of metadata without previous static 

knowledge of its metamodel. 

The following features of the four-layer architecture are suggested within the 

specification as making it advantageous: 

• Openness; that is, ability to support any possible modeling paradigm; 

• Possibility to explicitly define relationships (or mappings) between different kinds 

of metadata; 

• Incremental addition of new metamodels or their elements is possible; 

• The common meta-metamodel constitutes a base that allows to interchange different 

models and metamodels between parties. 

The issues like model-to-model transformation mechanisms or a specification of 

modeling notations for metamodels developed with the MOF are expected to be 

addressed in future versions of the specification. 

Two related specifications establish very important connections between the MOF 

and other standards or tools dealing with metadata. The first of them is the UML profile 

for MOF (part of EDOC specification [37]), providing a standard way of visual design 

of metamodels defined in terms of MOF constructs. The mapping is two-way, thus it 

also allows to view the MOF-compliant models with UML. In particular, following 

those specifications can provide a commonly understood base for formulating proposals 

of different metamodel specifications.8 The second of mentioned specifications, even 

                                                 
8 Indeed, the most of conceptual diagrams presented in the following parts of this work as UML class 
diagrams can be considered to be MOF-compliant. 
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more important, is the XMI specification, which describes a standard way of expressing 

MOF-compliant metamodels and metadata in the W3C’s XML [62] format. This 

provides a widely-accepted format for the interchange of different types of metadata e.g. 

among modeling tools (thanks to the fact that UML metamodel is also defined in terms 

of the MOF) or different type of data repositories or data-analysis tools. 

2.4 Common Warehouse Metamodel 

The OMG CWM (Common Warehouse Metamodel) [36] standard addresses the 

issue of metadata interchange in the area of data warehousing. It provides a metamodel 

definition specialized for this problem domain, although being independent on any 

specific data warehousing implementation. With a wide scope assumed by the 

specification (description of a whole data warehouse system) it is intended to establish 

generic data warehouse architecture [36]. 

The base of this specification is the Object Model, which has been created as a 

subset of the UML metamodel. Thus all the standards discussed so far share the same 

object model as a base for additional metamodel elements, specific for the application 

domain of a given standard. Another package, named Foundations, provides the rest of 

basic metamodel elements, which in contrast to the Object Model package are specific 

to the data warehousing domain. It consists of concepts describing business information 

(parties, locations, contacts, documents etc.), datatypes (extending those covered by the 

Object Model), expression representation, base concepts for indexing the data, software 

deployment (sites, machines, components etc.) and mapping between data types (from 

different systems). 

Additional packages, based on the abovementioned ones, concern among others 

the following issues: 

• Data resources (with support for different data models used to store them, like 

record, relational, object-oriented and others); 

• Data analysis (including data transformation and visualization, OLAP, data mining). 

• Warehouse management, including description of operations performed on data 

warehouse system. 



www.manaraa.com

– 23 – 

The details of the standard are irrelevant to this work. However, it is outlined here 

as an example of a domain-specific metamodel definition, based on the standard OMG’s 

modeling framework. Technically, the integration with UML and MOF is achieved by 

defining the CWM in terms of MOF meta-metamodel. Particularly, this allows to apply 

the XMI mapping to a warehouse description, which allows for [36]: 

• Transformation of the CWM metamodel into XML’s Document Type Definition 

DTD; 

• Transferring warehouse metadata in the form of XML documents conforming to the 

abovementioned DTD; 

• Providing the CWM metamodel itself in a form of a XML document (based on DTD 

defined by the MOF standard) in order to use it in generic MOF-compliant 

repositories. 

2.5 Model Driven Architecture 

The most recent significant initiative of the OMG, named Model Driven 

Architecture (MDA) [38], takes advantage from the strong integration among 

abovementioned standards. It is intended to support rising a level of abstraction used in 

software development and integration. More precisely, it provides a UML-based 

modeling framework assuming a clean separation between business logic model and the 

design elements dependent on infrastructure (programming languages, middleware etc.) 

selected to deploy it. This is motivated both by the need to manage the complexity of 

system’s specification, as well as by the observation that an enterprise has to deal with a 

number of different deployment platforms, which additionally (in a longer perspective) 

are definitely a subject of change. Moreover, a very popular postulate of reuse, raised 

here to the level of conceptual model instead of implementational artifacts, also comes 

into play. 

The specification distinguishes the following main levels of abstraction: 

• Computation-independent business model (also called a domain model); 

• Platform Independent software Model (PIM); 

• Platform Specific software Model (PSM); 
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• Implementation. 

Although analogous mappings exist between all those levels, the specification is 

focused on PIM and PSM, which are the most important for the development effort and 

at the same time precise enough to consider support for their automatic mappings. 

The most important concept used by the MDA is the cross-model refinement 

correspondence that holds between a more abstract base model and another model of the 

same system, which adds details determined by a design decision or perhaps predefined 

mapping (called refinement pattern). A transformation of different nature occurs during 

zooming-in or zooming-out, which means changing the granularity of details presented 

by a model. This mechanism is related with the model packages composition. A yet 

another concept that explains differences between models is a viewpoint, specifying an 

abstraction criteria according to which a given model is built. A viewpoint 

correspondence holds between two models created according to the same viewpoint, 

which is necessary to determine e.g. when specifying two systems to be integrated. 

The above overview may lead to the question, if the MDA is not just a kind of 

methodology, promoting design and integration good practices and depending on the 

UML and related specifications. In fact, a more distinct contribution of MDA may be 

expected from specializing existing modeling framework towards support of specific 

PIMs and PSMs. Particularly, this would mean: 

• UML profiles for PIMs. At this level the number of necessary profiles is assumed to 

be very small, as they need to indicate only a general domain of developed system 

(e.g. enterprise computing, real-time or other) in a platform independent fashion. 

• So-called pervasive services definitions. Those are specifications of the most 

important services required by a distributed object environment (of course inspired 

by CORBA’s Common Object Services specifications), defined on a higher level of 

abstraction to make them platform-independent. The specifications of pervasive 

services will need to be backed by platform-specific definitions for all of the 

middleware platforms supported by the standard [38]. 

• UML profiles for PSMs. Those would define (through stereotyping of appropriate 

UML modeling notions) the constructs available in particular implementation tool 
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or platform. For example, the profile for CORBA’s PSM may stereotype the UML’s 

class concept to distinguish its IDL constructs like interface, valuetype, struct etc. 

• PIM to PSM mapping patterns or guidelines. Whenever it is feasible, the transition 

from PIM to PSM should be supported by standard mapping, allowing to automatize 

such development step. If a PIM is not precise enough to determine optimum 

mapping, the annotations9 accompanying such PIM may be taken into account. If 

there is still a number of possible choices, guidelines or patterns referencing a given 

mapping case may support developer in manual choice of an optimum solution. 

• PSM to PIM mappings to support reverse engineering. 

Making the last two of mentioned specification elements precise enough to be a 

subject of tool support may be feasible only in a limited scope. On one hand a rich 

repertoire of implementation constructs may be available for a given PSM. On the other 

hand, the modeling language of PIM may be too limited. For example current UML 

version allows for pretty precise specification of structural aspects, thus making it 

possible to map this aspect of specification into a PSM. However the lack of adequate 

UML description of behavioral semantics is a limiting factor, whose removal would be 

very important for future evolution of the language [20]. The MDA may also require the 

UML to improve its ability to describe the refinement relationships as well as the zoom-

in and zoom-out model capabilities. 

2.6 ODMG 

The Object Data Management Group (ODMG) was created in the 1991 by a 

number of the OMG member companies, together representing almost the entire object-

oriented database systems’ industry. The aim was to strengthen the market position of 

ODBMSs, by establishing a set of de-facto standards, allowing for the portability of 

database applications between different ODBMSs. Within the next ten years, the 

ODMG issued four versions of object-oriented database standard, which, comparing to 

its relational database counterpart, the SQL, failed to gain a significant popularity, at 

least it the commercial world. 

                                                 
9 Annotations are assumed to be platform independent. An example of important information brought by 
annotation, provided in [38] is the distinction of conceptual-model classes into describing an entity or a 
process. 
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As explicitly stated, the main assumption of the standard was to borrow as much 

as possible from existing specifications, namely the OMG CORBA and SQL, and to 

align its definition with the properties of existing products. This led to an architecture 

characterized by the following design decisions: 

• A database is provided as a persistence feature added to a general-purpose object-

oriented programming language, which plays a role of database’s data manipulation 

language and uses standardized API to explicitly invoke DBMS’s operations. 

• The assumed object model is programming language-independent, although closely 

follows the common elements from object models of the supported languages. The 

most recent version of the ODMG standard supports C++, Smalltalk and Java, 

defining appropriate APIs and language mappings from the abstract Object Model. 

The way of manipulating objects is language specific. E.g. in Java language, 

persistence through reachibility and garbage-collection concerning database objects 

are assumed. 

• Database schema can be defined using Object Definition Language (ODL), defined 

as a superset of the CORBA’s IDL. The most important enhancements concern 

bidirectional, integrity-maintaining binary relationships between objects and 

collections (set, bag, list and map), being the primary mean to organize database’s 

data structure. 

• Database does not store objects’ behavior. It can be specified only by methods in 

applications’ code, and is performed exclusively on the client’s side. This kind of 

architecture is usually called a passive server. 

• The syntax of the standard’s query language, named OQL (Object Query Language) 

is inspired by SQL, although the similarities are rather superficial (especially, 

considering the notion of object’s identity). In contrast to the SQL, the OQL lacks 

imperative constructs, although it allows data manipulation through invoking 

methods (which may have side effect), by selecting them within the “select” clause. 

Since the features of the OQL make it insufficient for writing complete applications, 

the OQL statements (similarly like in case of SQL) are supposed to be embedded 

within a programming language code. In effect the so called “impedance mismatch” 

problem of embedded SQL occurs also in case of the OQL. 
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Taking into account the strong connection between database and programming 

language, the complexity of the OQL and ambiguities of its definition, the role of the 

query language in the above architecture unfortunately becomes rather secondary, 

which is confirmed by a very limited support for the OQL provided by commercial 

ODBMS. This may be perceived as a step backwards compared to relational databases, 

since using solely programming language to manipulate database objects is a low-level 

and not a very productive approach. This seems to be the most serious and fundamental 

source of controversy around the ODMG specification. Another reason is a generally 

low technical quality of the specification, which is exemplified e.g. by issues discussed 

in the next chapter. 

The ODMG metamodel, is defined through a collection of ODL interfaces, which 

are intended to provide access to an ODBMS schema repository, organized analogously 

to CORBA’s Interface Repository, which has been the pattern for this definition. As can 

be seen from the fragment presented in Fig. 3, the structure of the metamodel is very 

complex, and despite the total number of interfaces (31) is smaller compared to the 

latest version of Interface Repository specification [35], its usage seem to be even more 

complicated. The ODMG metamodel specification still seems to be immature, and the 

consequences of providing some of its features (e.g. metadata-updating operations) have 

not been addressed so far. This is additionally confirmed by the fact that e.g. the latest 

ODMG Java binding specification has not accommodated those interfaces at all, while 

the C++ binding supports them only in their read-only part. 

Since the ODMG standard metamodel remains the most relevant specification to 

the topic of this work, some of its issues will be further discussed in the following 

chapters. 

Since the publication (in 2000) of version 3.0 of the specification [34], the 

standard seems to be stagnant. Currently, the only actively developed and implemented 

sub-area of that standard concerns support for Java language and took the form of the 

Java Data Objects (JDO) specification, influenced in some extent by the ODMG Java 

binding. 
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Fig. 3. A segment (ca.25%) of the ODMG metamodel 

The JDO [27], being maintained by Sun Microsystems Inc., is intended to provide 

a uniform programmer’s interface to manipulate persistent objects from different data 

sources, treating them as common Java objects. The scope of this standard is much 

more modest compared to the ODMG, which is reflected e.g. in the lack of a query 

language specification. In this area, the standard provides only an interface named 

Query, which allows for simple extent or collection filtering, based on predicates 

defined over its objects’ state. The queries can be paremetrized, but on the other hand, 

do not support using method calls in the predicate body. 

The JDO does not define special support for metadata management. Its features in 

this area are almost identical to regular Java’s reflection mechanism, and are provided 

through a special interface, allowing to avoid using reflection during runtime. 
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2.7 The OASIS project 

The aim of the OASIS (ODMG Architectures for the Specification of 

Interoperable Systems) project [46] was the construction of a federated healthcare 

system, based on the ODMG as a canonical data model. This kind of application is 

especially interesting because of the need to integrate heterogeneous data sources, 

which depends heavily on accessing and manipulation of metadata. The resulting 

publications provide a number of interesting remarks on the required features of 

ODBMS architecture in general and its metadata-related features in particular. It is 

worth to mention the following issues: 

• The approach used to integrate systems into a federation extensively used a view 

mechanism to define data sources in the form suitable for exporting from local 

systems as well as to integrate them into a federated schema. This requires a 

powerful view mechanism, including appropriate metamodel constructs, since the 

virtual classes (including inheritance graphs), attributes and relationships created by 

a view definition need to be explicitly represented in a schema repository in a way 

analogous to metadata of a base schema. 

• An integration of distributed databases makes the passive sever architecture, 

prohibiting the behavior sharing, inappropriate for several reasons. Firstly, it 

jeopardizes consistency, since there may be a number of implementations realizing 

logically the same behavior on the same data. Secondly, if the behavior resides only 

on the client’s side, the federated view definition cannot access it, thus it has to be 

limited to dealing with static objects’ properties only. Thirdly, in case of multimedia 

object extraction, inability to select the searched fragment (e.g. a scene in a long 

video sequence) on the server side may result in a big data transfer overhead [28]. 

Another drawback of the ODMG specification discovered in the context of a 

federated system construction was the lack of standardized event notification 

mechanism, essential for propagating updates throughout the federation. 

• The integration of heterogeneous databases (mapped for this need into a chosen 

canonical data model) requires extracting the metadata that describe the 

organization of provided resources. Experience showed that despite standardization 
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of API, the portability of generic applications using reflection mechanism among 

different DBMS is not possible with the current level of specification [47]. 

2.8 Metalevel architecture in programming languages 

A large amount of research concerning metalevel architecture comes from the 

programming languages domain. The most popular topic from this area is a reflection 

mechanism, whose understanding may differ between database and programming 

languages communities. In the former case, the main concern is the ability to extract 

database metadata in order to make it manipulable by generic applications, the latter 

focuses on behavioral reflection, including the ability to dynamically modify the 

program being currently executed. The major contribution of metalevel architectures is 

support for the postulate of separation of concerns in software development (credited to 

Dijkstra [12]). Two approaches to this issue are briefly presented below. 

The Aspect Oriented Programming (AOP) [30] has recently gained a significant 

popularity as a programming paradigm improving the ability of traditional languages to 

deal with so-called crosscutting concerns. As the name suggests, those are the required 

features of software, which are difficult or impossible to modularize using classes, 

methods or procedures. They are often related with various kinds of non-functional 

requirements, like e.g. persistence, security, synchronization, real-time constraints or 

monitoring, whose implementation is usually scattered among different fragments of 

code, which makes it less readable and complicates its maintenance. The solution 

offered by the AOP is an abstraction called aspect, used to modularize a given concern 

in a way that does not affect the base code. 

This provides a kind of additional design “dimension”, which becomes integrated 

into the application during the compilation phase, by a mechanism called aspect 

weaver. 

For example, the well known Java-based implementation of the AOP paradigm, 

called AspectJ [2], provides two general kinds of extending mechanisms: 

• Behavior modification using advices. The term pointcut denotes a declaration that 

identifies a family of precisely defined points in the execution of a program, which 

are called join points. AspectJ supports identification of join points of several kinds, 
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including method call or execution, access to an attribute, and invocation of a 

constructor or exception handler. Those elements can be identified by their name (or 

its part), their location in terms of Java’s classes and packages, as well as by 

signatures (that is, types of attributes or methods’ parameters). Join point definition 

can be made more specific by combining several simple pointcuts using logical 

operators. Advice can provide arbitrary behavior to be executed before, after or even 

instead of execution points defined by a given pointcut it is assigned to.10 Additional 

flexibility is provided by a reflective interface, allowing to extract a context of 

particular join point from within the advice code. 

• Class structure modification using introduction. This mechanism allows for 

modifying definition of a given class, both in terms of behavior (new or overridden 

methods) as well as the structure (additional attributes). This includes possibility to 

modify inheritance hierarchy by making existing class extend other class or 

implement certain interface. All these changes can be achieved by declarations 

located outside the considered class. 

Another approach to the separation of concerns problem is providing metaclasses 

as a mechanism fully definable by a programmer. In [14] the role of metaclasses is 

described through the analogy to natural language elements: if a class corresponds to a 

noun, then a metaclass can be compared to an adjective, as it provides certain properties 

(like e.g. thread-safe or persistent) further specifying a class definition. When a class is 

declared as an instance of certain metaclass, it gains its properties analogously like an 

object, whose behavior and internal structure is defined by its (regular) class. Similarly 

like in case of the AOP, it allows to decompose the problem according to different 

criteria (as every class can be an instance of multiple metaclasses) and to guarantee 

certain level of mutual independence if their redefinition. However, this approach may 

be lead to potentially very sophisticated structures of metaclass definitions, which may 

make the whole idea too complicated for a broader audience. 

Since this work is focused rather on structural dimension of metadata, the 

majority of topics outlined in this section remain of little relevance to the subject. 

                                                 
10 Of course, this may affect the consistency of original code. Note however, that the construct is much 
more controllable than e.g. the infamous goto statement, as the control is assumed to return to the original 
join point. 
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However, the issue of separation of concerns using metamodel constructs will be briefly 

discussed in further chapters. 

2.9 XML Schema and the Resource Description Framework 
(RDF) 

The World Wide Web Consortium (W3C) is a widely recognized organization 

involved in specifying common protocols for interoperability of web resources and 

services. The today’s most popular specification of this consortium is the eXtensible 

Markup Language (XML), proposed to make web contents more meaningful, by 

introducing a logical structure through a use of HTML-like tags. Thanks to its 

extensibility and platform-independence, it also became an attractive option for porting 

a data between heterogeneous repositories. The XML is a base for a number of related 

technologies, concerned e.g. with visualization of contents, building links and 

relationships between XML entities, or defining the required structure of a XML 

document. 

The last of mentioned issues is addressed by the XML Schema [63] specification. 

It introduces a concept of type, which may be a simple type or a complex type, where 

the latter describes a structure instead of a simple value. A type, once defined, may exist 

within a structure under a number of different fields. Field definitions may be described 

by multiplicities and default values. An unconstrained, predefined “Any” type is 

available. Based on existing type definitions, new, derived types can be defined, either 

through restriction of their values’ domain or through extension, which means 

extending a complex type with a new element. Lists and unions based on simple types 

can be defined; for complex types union-like choice groups are available. Types can be 

defined abstract. A substitutability concerning derived types holds. 

As a result of the XML design assumptions, the XML Schema does not deal with 

behavioral elements (like operations) nor with relationships (which are subject of 

separate XML-related specifications). 

As can be seen from the above overview, the XML Schema is limited to imposing 

structural validity constraints on XML documents. Thus it leaves untouched the issue of 

providing semantic description of Web-based resources. This is the role of the Resource 
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Description Framework (RDF) specification, which is intended to provide a general 

mean to provide arbitrary descriptive information about web-based resources. 

A resource, being a subject of RDF description is assumed to be uniquely 

identified by a Uniform Resource Identifier (URI), which may be constructed using 

URL. Resource descriptions are described through a graph structure, namely a directed, 

edge-labeled graph, where each described resource, called in this context subject, has a 

certain number of related named properties with their values. The part identifying such 

property is called predicate and has connected a value, which is called object. Since 

some objects may be subjects of further descriptions, the resulting graph may be 

arbitrarily complex. Since objects can be either simple values (e.g. strings), or related 

resources, the described mechanism effectively supports both resources’ properties and 

relationships between resources [60]. 

Alternatively to a graph representation, a XML standard format for storing the 

RDF descriptions has been defined. It assumes storing each subject-predicate-object 

graph arc as a triple of XML statements, containing appropriate values and identifiers.11 

Taking into account that the RDF is focused on resource’s semantics instead of 

describing constraints on its structure and because the assumed resource-identification 

systems allows to deal with any describable entities (not just web documents), it can be 

treated as a lightweight ontology system to support the exchange of knowledge on the 

Web [21]. 

A prominent example of early application of the RDF is the Dublin Core 

Metadata Element Set (DC), specified by the Dublin Core Metadata Initiative 

organization. Although both specifications were developed independently, some 

requirements discovered when formulating the DC were taken into account in the RDF 

development [11]. 

The DC provides a very general collection of properties, which is intended to be 

applicable to a very broad range of application domains. It consists of the following 15 

descriptive elements [11]: 

• Title:  A name given to the resource, by which the resource is formally known. 

                                                 
11 To prevent ambiguity, also predicates can have their URIs assigned. 
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• Creator: E.g. a person, an organization, or a service, indicating the entity 

responsible. 

• Subject and Keywords: The topic of the content of the resource. Using a controlled 

vocabulary or formal classification scheme is recommended. 

• Publisher: An entity responsible for making the resource available. 

• Contributor: An entity responsible for making contributions to the content of the 

resource. 

• Date - associated with an event in the life cycle of the resource (it is usually the 

creation date). 

• Type: The nature or genre of the content of the resource. Choosing a value from a 

controlled vocabulary is recommended. 

• Format:  Describes the physical or digital manifestation of the resource. 

• Identifier: An unambiguous reference to the resource within a given context. Using 

a formal identification system like e.g. URI, DOI (Digital Object Identifier) or ISBN 

is recommended. 

• Source: A Reference to a resource from which the present resource is derived. 

• Language: A language of the intellectual content of the resource. 

• Relation: A reference to a related resource. 

• Coverage:  The extent or scope of the content of the resource, in terms of place 

name, spatial location, temporal period of jurisdiction. 

• Rights: Information about rights held in and over the resource. 

As can be seen from the above example, the understanding of a term “metadata” 

differs significantly between the web content management and database communities. 

In the area of web resource description it tends to be a very broad term covering all 

related data not shown explicitly within a regular document. The database and UML 

community focuses on data element’s invariants and a description of the context that 

manipulates or accesses that data. The majority of DC’s properties would be applicable 

to particular data element (e.g. database object) rather than to a family of elements as it 

is typically the case for database metadata (e.g. interface, type, collection). 
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Nevertheless, a number of properties required for the content management are 

applicable to database metadata and thus may require metadata structure openness to 

accommodate new descriptive elements. 

Although web resources tend to be less structured in comparison with traditional 

database management, RDF developers found it necessary to define, what descriptions 

(that is, properties) are expected for particular types of entities and perhaps also – what 

would be the types of their values. The resulting specification – the RDF Schema, is 

described as a vocabulary description language, defining classes and properties that can 

be used to describe other classes and properties [61]. 

rdf::property

name

rdfs::resource

name

rdfs::class

rdfs::subClassOf

* rdf::type

*

rdfs::SubPropertyOf

*

«instance»

«instance»

rdfs::range*

rdfs::domain *

«instance»

 

Fig. 4. RDF Schema concepts depicted using UML class diagram 

The diagram in Fig. 4 is an attempt to show relationships among RDF Schema 

concepts. Since RDF descriptions constitute a kind of metadata, this directly 

corresponds to a metamodel concept discussed in previous sections. A class specifies a 

type of a given resource and determines which properties have been defined to describe 

it and what would be in turn the type of such description (through the range 

relationship). Moreover classes and properties can form generalization-specialization 

hierarchies, for which substitutability holds (as described in the context of XML 

Schema). The only element of this simple diagram that may be found disturbing is the 

existence of the «instance» dependencies suggesting, that the model mixes two 

metalevels (range, type, subClassOf and subPropertyOf are all instances of the 
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property). In fact however, similar solution exists e.g. for the UML and the MOF, 

whose metamodels are defined in terms of their own core concepts, but it simply does 

not have to be explicitly shown in their metamodel diagrams as it is implied by the 

UML notation. 

2.10 Objectivity/DB 

The Objectivity/DB is a good example of a mature commercial ODBMS 

developed by an ODMG-member company. The system supports all three programming 

languages considered by the ODMG (C++, Smalltalk and Java) and its language 

bindings retain a relatively high level of compliance with the standard, although rather 

insufficient to guarantee a source code portability. Objectivity/DB does not support the 

OQL language at all, which is quite common among today’s commercial ODBMSs. 

Instead, it provides only instance- filtering capability similar to the one specified by the 

JDO Query interface mentioned earlier.12 

The following properties of Objectivity/DB are associated with its ODMG 

compliance: 

• Lack of stored procedures. The drawbacks of this assumption have already been 

enumerated. The advantage is the ability to ultimately decentralize the processing 

(practically the only centralized feature remains transaction/locking control). 

• Usage of the data model of underlying object-oriented programming languages. 

The absence of the OQL, makes a programming language the only mean to access 

database objects. The access is quite seamless, although at the same time rather low-

level due to almost complete lack of declarative constructs.  

• Lack of object relativism. Objects can only contain primitive members (not being 

objects) and object references. Therefore, although database can store structures of 

arbitrary complexity and nesting level, their implementational structure is quite flat. 

That is, the only real composition relation holds between objects and their attributes 

and among DBMS-defined storage objects. Except the composition hierarchy 

elements shown in Fig. 5, there is no other composite objects. This also entails 

inconveniences known from Java itself: the need of special treatment (also when 
                                                 
12 It is even more limited than the JDO’s solution due to the lack of support for query parameters and 
constraints over the attributes of type Date. 



www.manaraa.com

– 37 – 

using reflection) and limitations connected with primitive types, make this 

“contamination” of object-oriented model rather unpopular [1]. 

On the other hand, in contrast to the ODMG definition, Objectivity/DB does not 

deal with the concept of extent. Instead, a persistence-capable object may be placed in 

any container, and each container may store instances of different classes. In effect, 

class definition is completely separated from storage structures. To better organize 

storage of very large amounts of data, the ODMG’s concept of Database has been 

replaced by three levels of storage objects, as shown in Fig. 5. Moreover, some issues 

not addressed by the ODMG standard, like e.g. security mechanisms or event 

notification, has been designed for Objectivity/DB as services external to the core 

DBMS. 
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*

Federated
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Database
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Subject of administrative operations.

Corresponds to a single disk file;
A unit of distribution.
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*
Persistent
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Primitive value, character string,
or a reference to a pesistent object

 

Fig. 5. The containment hierarchy of the Objectivity/DB data structures 

The system maintains database metadata internally. The ability to access or 

manipulate it differs significantly among programming language bindings. For C++ a 

special facility called Active Schema is offered as a separate product. Its interfaces, 

partly compliant with ODMG metamodel specification, allow for examining the schema 
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and evolving it. It is also possible to browse and modify persistent objects through 

Active Schema, with absence of their class’ implementation. The schema change history 

is maintained, but solely for the need of deferred object conversion in result of a schema 

evolution. 

In case of the Java binding, the situation is completely different. The Java’s 

reflective capability allows for isolating the schema from developer and for performing 

all its updates implicitly. That is, class is registered into a schema at the first time where 

the DBMS deals with persistent instances of such class or of classes whose definition 

refers to it (although classes can be also registered explicitly in advance). Despite the 

lack of Java interface to Objectivity/DB schema, some information can be extracted 

using standard Java’s reflective API. This solution is limited though, since it requires 

presence of appropriate instances within database, as well as the access to the valid 

version of implementation of the classes registered in the schema. This is also a case for 

some of recently developed lightweight Java-based ODBMS (see eg. [10]). 

Note also, that even in case of C++ interfaces, allowing access and updating of the 

schema definition, the schema structure is fixed and does not allow for any custom 

extensions of the underlying metamodel. 
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3 The concerns of DBMS metamodel 

In this chapter the major issues related to the construction of the metamodel for 

object databases are presented. As will be shown, none of the currently available 

solutions (in particular, the ODMG standard), address all this issues in a satisfactory 

degree. A database metamodel should fulfill the following main roles: 

• Data Model Description. The metamodel definition should be presented in a form 

that support understanding of the introduced data model by all parties, including 

system developers, users, administrators, researchers and students. It specifies 

interdependencies among concepts used to build the model, some constraints, and 

abstract syntax of data description statements; thus it supports the intended usage of 

the model.  

• Implementation of DBMS. A metamodel determines the organization of a 

metabase (usually referred to as a system catalog in relational databases or a schema 

repository in object-oriented databases). It is internally implemented as a basis for 

database operations, including database administration and various purposes of 

internal optimization, data access and security. 

• Generic programming. The metamodel together with appropriate access functions 

become a part of the programmer’s interface to enable generic programming 

through reflection, similarly to Dynamic SQL or CORBA Dynamic Invocation 

Interface. 

• Schema evolution. A metamodel equipped with data manipulation facilities on 

metadata supports schema evolution. As will be shown, this requirement is often not 

well understood. Changes to a schema imply a significant cost in changes to 

applications acting on the database. Thus schema evolution cannot be separated 

from software change and configuration management.  

• Separation of concerns at the metadata level. Allowing the developer to modify 

the system behavior related with particular metadata, realized e.g. in the spirit of 

Aspect-Oriented Programming (AOP), seems to be very promising for the DBMS 

flexibility and its ability to deal with non-functional requirements. The metamodel 

definition should take into account the properties needed by such extensions. 
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• Formal description of local resources (called ontology) in distributed/federated 

databases or agent-based systems. A metamodel informs external parties (for 

example, mobile agents) on the content and organization of local resources. 

Recently this aspect has received special attention, reflected e.g. by the RDF 

standard of W3C [60] described in the previous chapter. 

As will be demonstrated, these metamodel goals are contradictory to some extent. 

The following sections present peculiarities and requirements connected with each of 

the aforementioned goals. In the context of these issues the serious drawbacks of the 

ODMG standard metamodel proposal are identified. This will lead to general 

conclusion that the ODMG metamodel specification needs significant improvements. 

3.1 Data model description 

This role of metamodel is central in case of modeling language. However, also for 

an ODBMS metamodel it is of primary importance, especially because the clarity and 

understandability of new technology is critical for the success of its adaptation. This 

role of metamodel definition is also the most straightforward and intuitive. The usability 

of other metamodel features is dependent on the quality of this definition. Thus the clear 

description of data model primitives and their interrelations is necessary. 

The UML [41] is an example of addressing that aspect of metamodel. This case 

shows that even without resorting to formal definitions it is possible to satisfactorily 

describe the meaning and the intended usage of data model notions. Graphical notation, 

together with a number of examples and natural language descriptions keep the number 

of ambiguities low. Taking into account that in case of database system metamodel 

constructs are connected with implementational structures and clarified by the query 

language semantics, the similar style of description would be satisfactory for DBMS 

metamodel. However, the fact that such metamodel need to be directly implemented 

speaks in favor of employing a much simpler metadata structure than the one implied by 

the UML. 

It is necessary to mention that the quality of the ODMG metamodel description is 

much worse than in case of the UML. There are flaws in the style that the ODMG use to 

explain the goals and semantics of the metamodel, together with a lack of many 

definitions and explanations. Methods to access and update a metabase are not 
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described at all. Thus, ODBMS developers must induce the meaning from names and 

parameters used in the specification, which will probably lead to incompatible (or non-

interoperable) solutions. In its present form, this part of the standard is underspecified 

and ambiguous, thus making it difficult (or impossible) to understand the intended 

usage of its features. 

3.2 DBMS schema implementation 

This section introduces the requirements that are to some extent contradictory to 

those connected with descriptive role of metamodel. Definition of a metamodel 

following the UML style guarantees expressiveness, however such a rich structure is 

impractical or even unacceptable concerning the implementational requirements. The 

database schema implementation brings the following criteria of metamodel quality: 

• Simplicity. The metamodel and the metabase should be simple, natural, minimal 

and easy to understand, in order to be efficiently used by developers of DBMS and 

database administrators. 

• Universality. Implementation of database languages and operations requires various 

accessing and updating operations to the metabase. The metamodel should support 

all such operations, and these operations should match, as closely as possible, 

similar operations for regular data.  

• Performance. Metabase operations that originate from the database management 

system or from applications may be frequent, and thus it is important to organize the 

metabase so as to guarantee fast run-time access and updating. 

• Physical data structure information support. Data describing physical structures 

(e.g. file organizations, sizes of collections, indices, access methods, etc.) as well as 

data used for optimization (access statistics, selectivity ratios, materialized views, 

stored results of methods, etc.) must be included in the metabase. Although this 

information is not relevant to the database conceptual model, the metabase is the 

only place to store it. Thus, it would be appropriate to allow extensions to the 

metamodel structure, to provide storage for all necessary information regarding the 

physical properties of a database. 
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• Privacy and security. As stated previously, this aspect is not relevant to the 

database conceptual model, but the metabase repository is usually the place to store 

information on privacy and security rules. The metabase repository itself should also 

be a subject for strong security rules. 

• Extensibility. The metabase structure and interfaces should be easily extendable to 

support further development and extensions of DBMS functionalities. There are 

features such as views, constraints, active rules, stored procedures, etc. which could 

be incorporated into future ODBMS standards and implementations. 

In this role the metamodel presented in the ODMG standard is too complex: 31 

interfaces, 22 bi-directional associations, 29 inheritance relationships and 64 operations. 

It is too difficult to understand and use by programmers. The worse, this already large 

structure is by no means complete. There are many examples showing that the defined 

methods are not able to fulfill all necessary requests. Some of abovementioned features 

requiring standardization (e.g. privacy and security) have not been addressed so far. 

Some other (e.g. some kinds of physical data structure information) may need to be a 

subject of database vendor’s custom extensions that would further complicate the 

metamodel structure. Moreover, future extensions of the standard, such as rules and 

triggers, views, database procedures, methods (not covered by the ODMG standard) 

will cause further growth in the complexity of the metamodel. Summing up, the ODMG 

metamodel structure is very complex and at the same time far from being complete. 

This leads to the conclusion that this style of metamodel definition would result in an 

interface too complicated to be effectively used by programmers.  

3.3 Generic programming through reflection 

As explicitly stated, the ODMG metamodel should have the same role as the 

Interface Repository of the CORBA standard, which presents some data structures 

together with operations (collected in interfaces) to interrogate and manipulate the 

defined IDL interfaces. The primary goal of the Interface Repository of CORBA is 

dynamic invocations, i.e. generic programming through reflection. This goal is not 

supported by ODMG, because the standard does not define all necessary features [47]. 
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Nevertheless, such reflective capabilities proved to be useful e.g. in SQL and 

should certainly be considered in a standard for ODBMS. Generic programming 

through reflection requires the following steps: 

1. Accessing the metamodel repository to retrieve all data necessary to formulate a 

dynamic request. 

2. Construction of the dynamic request, e.g. as a string, representing a (parameterized) 

query. 

3. Executing the request (with parameters). This assumes the invocation of a special 

utility, which takes the request as an argument. The result is placed in a data 

structure specifically prepared for this task. Since a request is usually executed 

several times, it is desirable to provide a preparation function that stores the 

optimized request in a convenient run-time format. 

4. Utilizing the result. In more complicated cases the type of result is unknown in 

advance and has to be determined during run time by a special utility that parses the 

request against the metamodel information. 

Although the ODMG standard specifies access to meta-information, thus 

supporting step 1, it does not provide any support for the subsequent steps (for a 

detailed discussion see [47]). 

The four reflection steps are implemented in dynamic SQL (SQL-89 and SQL-92) 

and in CORBA DII. Of special interest are the requirements for step 4. For the result 

returned, it is necessary to construct data structures whose types have to be determined 

during run-time. A query result type can constitute a complex structure, perhaps 

different from all types already represented in the schema repository. This structure can 

refer to types stored in the schema repository. Moreover, it must be inter-mixed (or 

linked) with sub-values of the request result, because for each atomic or complex sub-

element of the result, the programmer must be able to retrieve its type during run time. 

Hence the metamodel has to guarantee that every separable data item stored in database 

is connected to information on its type and this information must be available after 

query execution. Construction and utilization of such information presents an essential 

research problem. 

 Similarly, access to a metamodel repository is necessary to determine the 

structure of parameters required by the constructed request. Such features are available 
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in SQL through the “describe” statement. In contrast to the relational model, an object 

model has to deal with arbitrarily complex types of query results. The ODMG standard 

does not specify this aspect of the metamodel, thus a substantial subset of generic 

programming tasks are not implementable. 

To allow generic programming and portability, the standard (including its 

metamodel definition) must be very precise in each of the abovementioned aspects, 

including standardization of programming facilities concerning steps 2, 3 and 4. Even 

subtle differences in the organization of database repositories, their access operations or 

request execution functionality, undermine the portability of generic applications. 

3.4 Additional schema elements and extensibility 

As already stated, a database schema has to store also a number of items not 

directly reflected in the data model. In particular, additional information is needed to 

support data storage. Additional elements may concern information on physical 

database structure. Those of them (e.g. the number of elements in collections) that could 

be explicitly accessed by application developers, have to be defined in the standard. 

Some others, e.g. presence of indices, different kinds of data access statistics, etc., could 

be the subject of extensions proprietary to a particular ODBMS. 

Another example of additional metadata elements are information on ownership 

and access permissions. Since such mechanisms are built into the DBMS and accessed 

by applications, appropriate metadata elements should be the subject of standardization 

(c.f. CORBA Security Service [40]). 

In contrast to the relational model, type definitions in object systems are separated 

from data structures. Hence a metamodel repository must store definitions of 

types/classes/interfaces as distinguishable features connected to meta-information on 

storage structures. 

3.5 Schema evolution and Software Configuration 
Management 

Schema evolution capability is an important feature of a modern DBMS and is 

one of the most prominent issues to consider during database metamodel design. In 

contrast to the majority of the papers devoted to this subject, which are focused on 
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validity of schema modifications and on the subsequent object conversions, this work 

emphasizes the Software Configuration Management (SCM) aspect of a schema change. 

Thus, in this section the different issues of software configuration management are 

summarized and their relevance to DBMS itself is investigated. 

Schema evolution in object databases 

As a prominent feature of modern DBMS, schema evolution is supported in a 

number of commercial products. Unfortunately, this important aspect of ODBMS 

functionality is not effectively standardized and thus it is realized through proprietary 

solutions. The ODMG standard touches this issue only implicitly and, a will be shown, 

for different reasons inadequately. It may be surprising that the standard does not deal 

with this issue, especially, taking into account that the interfaces used to define its 

metamodel provide the modification operations. Their presence is adequate only in the 

context of schema evolution. 

This aspect of database functionality has been present for a long time as one of the 

main features to be introduced in object-oriented DBMS [4] and its importance is 

unquestionable. Although the database literature contains over a hundred papers 

devoted to the problem (e.g. [8],[18],[43],[45],[58]), it seem to be far from being solved. 

The majority of these proposals, although inspiring, can be perceived as too idealistic 

for today’s software development practice. Taking a more pragmatic approach, this 

section presents the problem from the software engineering point of view. 

Obviously, the schema evolution problem is not reduced to some combination of 

simple and sophisticated operations on the schema alone. After changes to a database 

schema, the corresponding database objects must be reorganized to satisfy the typing 

constraints induced by the new schema. Moreover, application programs acting on the 

database must be altered. Only some simple changes, such as the addition of a new 

class, association, attribute, procedure or method do not impact on existing applications, 

and only in the case of a proper level of data independence. Naive approaches reduce 

the problem to operations on the metadata repository. This is a minor problem, which 

can be solved simply (with no research), by removing the old schema and inserting a 

new schema from scratch. If database application software is designed according to 

software configuration management principles, then the documentation concerning an 

old and a new schema must be stored in the SCM repository. Hence, storing historical 
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information on previous database schemata in a metadata repository (as postulated by 

some papers) in the majority of cases is useless.13 In fact, apart from few very specific 

applications it is necessary to maintain at each moment exactly one valid schema 

version, with the requirement of consistent handling the changes applied to the schema. 

On the other hand, serious treatment of SCM and software change management 

excludes ad hoc, undocumented changes in the database schema. 

The ODMG solution (as well as many papers devoted to schema evolution) 

neglects the software configuration and software change management aspects. This 

seems to result from the fact that although the DBMS construction and software 

configuration management constitute the well established areas of research, they are 

usually considered in separation from each other. To effectively support the schema 

change in larger systems, a DBMS should provide features for storing dependency 

information concerning the schema. The advantage of such solution over storing them 

together with other configuration data within an SCM repository, would be the ability of 

automatically discover and register dependencies concerning database elements. This 

would require new metamodel constructs dedicated to this role. 

Assuring system’s consistency after schema change 

Maintaining the consistency between regular data and metadata is the most 

obvious requirement in the context of schema evolution. This is also relatively easy to 

realize, as both elements are managed solely by a DBMS. Therefore, the most 

significant practical problem related to schema management is the schema change 

impact on database-dependent applications. This has been recognized and different 

attempts to eliminate that issue were made. 

Many papers assume that the problem can be solved by database views. After 

changing a schema one can define views, which provide virtual mappings from the 

existing objects to the new schema; hence no changes occur in database object and no 

changes in existing applications is required. Alternatively, one can convert existing 

objects according to the new schema, but together defines views, which preserve the old 

schema for already defined applications. In both cases, old applications need not be 

altered, hence the major problem of schema evolution is solved.  

                                                 
13 Nevertheless, some parts of schema changes history may need to be maintained by DBMS internally, to 
perform the deferred object conversion consistently (see e.g. [33]). 
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In the majority of cases such an approach is idealistic for the following reasons: 

• Some changes in a schema stem from unsatisfactory properties of applications, 

hence changes of applications are inevitable. 

• Some changes in a schema stem from changes in business data ontology (e.g. 

implied by new law regulations). Any automatic mapping of existing data is unable 

to fulfill new business requirements. 

• View definition languages are not sufficiently powerful to cover all possible 

mappings. There are many mappings not covered by SQL views. 

• The view updating problem is solved only in specific cases and (probably) will 

never be solved in the general case. Hence many applications that require advanced 

view updating, cannot rely on this approach. 

• Access to data through views may result in unacceptable degradation in 

performance. Although materialized views partly solve the problem, this approach 

implies disadvantages: an additional storage, the updating of materialized views 

after updating of the original database, the updating of the database after updating 

the view. 

• Applications written in languages such as C++ and Java are tightly coupled to 

physical properties of database objects. Many (sometimes undocumented and low-

level) dependencies between application programs and database object limit the use 

of database views. 

In summary, although database views provide some hope for schema evolution, 

this approach is non-applicable in majority of cases. More detailed discussion on this 

topic can be found in [56]. 

Another approach to schema evolution can be based on concepts such as wrappers 

and mediators. The conceptual border between wrappers and mediators is undefined - it 

is usually assumed that wrappers implement simple mappings and mediators possess 

some “intelligence”. The approach is similar to the approach employing database views, 

but in contrast to database views, which are defined in high-level query languages 

(SQL), wrappers and mediators are proprietary solutions, tightly coupled to a category 

of applications and written in lower-level languages (C/C++, Java, etc.). The approach 
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is more realistic than the approach based on database views, but it requires low-level 

programming. It is extensively used in CORBA-based environments (in CORBA terms, 

wrappers and mediators are covered by the concepts of adapter and skeleton). Rules for 

designing and writing wrappers and mediators are not formalized or disciplined: each 

problem requires a standalone solution. Some of the abovementioned disadvantages of 

using views are also true for the approach based on wrappers and mediators. In 

particular, if a change concerns data representation or business data ontology then any 

kind of wrapper or mediator may be unable to solve the problem. In any case, the 

change will affect applications.  

Concluding, there is probably no satisfactory solution that would effectively 

isolate application programmers from the change impact. Thus handling this aspect of 

software change by resorting to the SCM methods would be inexplicable. 

Schema evolution in software change management 

Schema evolution forms part of a more general topic, which is referred to as 

software change management. It concerns the maintenance phase in the software life 

cycle. The cost of maintenance is very high and in total can, by several times, exceed 

the cost of initial software development. Thus, some discipline is necessary to reduce 

the cost. Software change management provides activities during the software 

development, operation and maintenance to support software changes. It also 

determines disciplined processes for altering software after changes. Both of these 

aspects are important. If software developers and clients neglect certain activities 

addressing future (usually unknown) software changes, then the future cost of changes 

can be extremely high. Changes to the software should follow some life cycle to reduce 

cost and time, and to achieve proper software quality. 

Basic activities of the software change management during software development 

and operation are the following (among many others): 

• Keeping high quality, availability and up-to-dateness of user and system 

requirements, as well as analytical and technical documentation. 

• Keeping clarity of software conceptual models, including the database schema and 

the structure of software modules. 
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• Preserving proper software architecture, which reduces contamination of software 

changes (for example, three-tier or multi-tier architectures). 

• Precise specification of interfaces between software modules. 

• Supporting software reuse by the identification and specification of reusable assets 

and generic modules (e.g. templates); supporting reuse by object-oriented methods 

of software analysis, design and construction. 

• Using high quality and high-level abstraction of software tools, avoiding 

programming in low-level languages, avoiding proprietary solutions and hybrid, 

eclectic architectures. 

• Preserving software quality by following quality assurance procedures and 

standards. 

• Software configuration management, which includes safe storage of all documents 

which appear during software development (source codes, requirements, technical 

documentation, etc.), preserving completeness and availability of the documents, 

keeping information on software versions, and keeping completeness and mutual 

consistency of all documents within a version (including historical versions). 

The software change management must also provide activities to accomplish 

organized software change processes, in particular, the following: 

• Organizing the process of reporting problems in software and/or in (changing) user 

or system requirements. 

• Collecting and storing software problem reports; organizing processes in which 

some organization units (e.g. a software change committee) are responsible for 

assessing reports and qualifying them according to importance, urgency, potential 

cost and impact on other software modules. 

• Organizing preliminary diagnosis of software problems and cost estimations of 

software changes. 

• Decision processes concerning the scope of software changes and/or making new 

versions of the software. 
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• Planning software changes, including feasibility studies, estimating costs and time, 

scheduling, organization of software development team responsible for the changes, 

organizing software quality assurance processes, testing of the changed software, 

regression testing of unchanged software (which can potentially be influenced by 

the change), documentation, SCM, etc.  

• Organizing the design and implementation of software changes. 

• Organizing testing changed software according to software testing plan. 

• Organizing regression testing (testing unchanged modules that can be influenced by 

the change). 

• Documenting changes, including software requirements, analytical, technical and 

user documentation. 

• Installation of changed software, training of users and acceptance tests. 

• Learning from change, and collecting historical data (cost, time, etc.) concerning 

software changes, to improve the change processes in the future.  

A proposal concerning schema evolution should refer to the activities of software 

development presented above, to determine a clear goal for the research. It can be 

formulated in terms of cost, time or quality of particular activities, and/or in terms of 

software quality.  

Software Configuration Management 

Schema evolution is closely related to another area of software engineering, 

namely the Software Configuration Management (SCM). SCM is a discipline for 

establishing and maintaining the integrity of the products of a software project 

throughout the project’s lifecycle [22],[23],[24],[25],[26]. SCM consists of planning, 

organizing, surveillance, controlling and coordinating activities, making it possible to 

identify, store and secure all components of the software and its documentation during 

the entire software life cycle, including change management. SCM is especially 

important if a project lasts several years and/or has many versions due to changing user 

requirements or system requirements. Bad SCM can totally paralyze a project. Schema 

evolution means a new version of a schema and, in consequence, a new version of the 

database, and a new version of applications. Thus, it must be disciplined by SCM. 
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A basic entity that SCM deals with is a software configuration item (SCI). An SCI 

can be atomic or complex. Complex SCIs include all software artifacts that present 

intermediate or final software products, including source code, documentation, tools, 

tests, etc. The basic principle behind SCM is that SCIs must be consistent. SCIs frozen 

for changes are called baselines. Some SCIs are called versions, revisions and releases.   

All software entities that are used or produced within a particular software version 

must be collected together as SCIs and stored carefully. This makes it possible to avoid 

situations where new code is associated with old documentation; old code cannot be re-

compiled because a relevant older compiler version is no longer available, etc. 

The scope of SCM concerns: 

• Documentation: user requirements, system requirements, analysis and design 

documents, testing documents, software quality assurance documents, etc. 

• Modules with source codes, object codes, program libraries, and binary codes. 

• Designed graphics, user screens, Web pages, etc. 

• Text files, dictionaries, databases. 

• Workspace tools: hardware, compilers, linkers, interpreters, protocols, libraries, 

RAD tools, CASE tools. 

• Software target hardware and software configurations (as documents or scripts). 

• Testing configurations, data, software and results. 

• Change management documents: new user requirements, new system requirements, 

software problem reports, decisions of the software change committee, new code, 

results of testing, etc. 

As follows from the above, all versions of a schema must be the subject of SCM. 

The new schema must be stored within a consistent configuration which includes new 

requirements, diagnosis and analytical documentation, data conversion code, code of 

new application modules, new design and implementation documentation, testing code, 

data and results, software transfer documentation, user documentation, etc. Schema 

evolution cannot be separated from other SCM aspects and activities.  
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The fact that schema evolution is a part of SCM has consequences for the 

metamodel. Usually, SCM implies the existence of a special repository for organizing 

and storing all software and documentation entities that are the subject of SCM. In 

simplest forms SCM is accomplished through packages such as CVS or Rational’s 

ClearCase, used by project teams to keep track of code and documentation versions. In 

more advanced cases, SCM is based on specially designed software libraries with 

complex structures storing information on software modules, documentation, 

configuration items, versions, projects, persons, roles in projects (project managers, 

analysts, designers, programmers, etc.), physical locations (file directories, databases, 

rooms, shelves, CD ROMs), etc. Such a library is related to another important activity 

of a software company known as knowledge management (with emphasis on tacit 

knowledge of people - participants of projects).  

It may be assumed that all physical software entities/documents are stored as 

library items (including source codes, documentation, compilers, DBMSs, operating 

systems, CASE tools, etc.). Configuration items are logical structures built over 

references to library items, to bear information on configurations, i.e. consistent sets of 

software entities and documents. Some configuration items are baselines, i.e. frozen to 

changes. Some baselines are releases, i.e. ready software products that are installed for 

clients.  Physical documents can be of several kinds: software components, management 

documents, software quality assurance documents, working documents, etc. 

Configuration items and library items can be the subject of activities: creating, deleting, 

changing, accepting, inserting new items, etc. Activities are performed by project roles 

or persons. A project role is responsible for some configuration items. A person has 

access rights and can loan a paper document or lock an electronic document (to prevent 

simultaneous changes). All historical activities, loans and locks are kept in the 

repository, to enable restoring the history of changes. 

It is implicitly assumed in the research devoted to schema evolution (in particular, 

in the ODMG standard) that actions on the database schema repository will immediately 

change a repository state. Sometimes, it is assumed that the repository will also be 

prepared to keep historical information on previous schemata. Taking into account 

software change management and SCM, such an approach is inadequate. A change to a 

database schema must be carried out on the SCM repository, which should be prepared 
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to keep both old and new schemata. Many other documents are related to this change, 

including software problem reports, new requirements, managerial decision documents, 

diagnostic documents, analytical documents, design documents, software code, testing 

documents, etc. All of this information must be kept within an SCM repository rather 

than within a metabase repository. The following subsection identifies other tasks 

assignable to a metabase that would provide an important support of the SCM while 

avoiding redundancy resulted from overlapping responsibilities. 

Dependencies among software units 

Some tasks of SCM are more efficient (in terms of cost, time and quality) if the 

information on dependencies between software units could be properly organized. This 

concerns the following tasks: 

• Diagnosis of a problem: this information makes it easier to conclude which part of 

the software is responsible for the problem or which part of the software is coupled 

with an old requirement that needs to be changed. 

• Planning and scheduling: the dependencies can show the scope of changes hence 

make it possible to estimate the cost, time, staff, infrastructure, etc. necessary to 

introduce a change. 

• Implementing and testing: implementing a change requires (as a rule) knowledge 

of dependencies of a changed software unit with other units. 

• Regression testing: after a given unit is changed and tested it may happen that some 

other units are affected. Regression testing means repeating testing processes on 

unchanged units in order to confirm their validity. 

• Preparing new documentation: after a change, further changes must frequently be 

introduced to the existing software documents; 

• User acceptance tests and education: after a change it is necessary to recognize 

system functionalities which were affected by the change, thus requiring new user 

acceptance tests and education; 

• Configuration updating: after a change it is necessary to establish a new baseline 

or a version (revision, release), i.e. consistent SCIs to be approved by official 
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bodies. This requires recognition of all software components and documents that 

had been affected by the change. 

Some dependencies between software units are or can be stored within a metabase 

repository. Other dependencies can be stored within an SCM repository, in particular, as 

SCIs. Some dependencies are difficult to recognize, thus they may require some 

extension of a metabase repository or an SCM repository. Below more important 

dependencies are listed. 

• Configuration dependency: some software and documentation units are dependent 

because they create a consistent SCI. This dependency is usually stored within a 

configuration repository. Configuration dependency is more relevant to SCM. 

• Standardization dependency: which software items follow the same standards. 

The dependency can be considered a particular case of the configuration 

dependency if standards are stored as configuration items. Standardization 

dependency is more relevant to SCM. 

• Forward dependency between procedural units of the software (procedures, 

functions, methods, views, etc.). The dependency shows which procedural units are 

called from a given procedural unit. This dependency is easy to discover by analysis 

of the code. The dependency can be stored within a metabase as e.g. a kind of UML 

collaboration diagrams showing message flow between classes/interfaces. Forward 

dependency is relevant to a metabase. 

• Backward dependency between procedural units of the software. The dependency 

is exactly reverse to the forward dependency. It is more valuable than the previous 

one because it shows which software units call a given unit. As stated previously, 

dependency can be stored within a metabase and associated with proper utilities. 

Backward dependency is relevant to a metabase. 

• Parametric dependency: it shows dependency between a given unit and a unit that 

can be a parameter to the given unit. This concerns e.g. call-by-reference parameters 

of methods or parameters of some (generic) software templates. Parametric 

dependency is relevant to a metabase. 

• Side effects dependency: Side effects concern all aspects of the data/computer 

environment that can be affected by a given procedural software unit. Side effects 



www.manaraa.com

– 55 – 

concern operations on a database, global data (shared among applications), 

environment variables, hardware devices, operating system registers, catalogs, files, 

external communication (ports, Internet), etc. In languages such as Modula-2 and 

DBPL some side effects are explicitly determined by special programming facilities 

called import lists. Current object-oriented languages do not determine side effects 

within class interfaces, hence the programmer and the system is unable to recognize 

them directly. This can be the source of serious bugs, cf. the Ariane-5 rocket disaster 

caused by an unspecified side effect. Side effects can be passive (a given procedural 

unit reads the state of some external resources), or active (a given procedural unit 

affects the state of some external resources). A metabase repository can store 

information on side effects; providing the information on them is an obligatory part 

of a software unit specification. For instance, a given method can be associated with 

a part of database that can be read and updated. Side effects dependency is relevant 

to a metabase and SCM. 

• Event dependency: holds between a unit raising an event and a unit catching it and 

triggering some action. The case is similar to forward and backward dependency. 

This information is usually present in the specification of interfaces (CORBA IDL, 

ODMG ODL), thus it can be stored within a metabase repository. Event dependency 

is relevant to a metabase. 

• Definitional dependency: holds between two data units, where one is a definition 

and another one is an instance of this definition. The dependency concerns 

interfaces, classes, types, patterns, skeletons, templates, schemas, specifications, etc. 

and their instances. Definitional dependency is relevant to a metabase and SCM. 

• Redundancy dependency: holds between units that contain redundant information; 

for example, dependency between copies of some data that are introduced to 

improve performance or to increase safety. Redundancy dependency is relevant to a 

metabase and SCM. 

• Stylistic dependency: holds between software units that follow the same design 

style of a user interface; for example, screens shown to the user, manipulation 

paradigms, used terminology and metaphors, etc. Stylistic dependency is more 

relevant to SCM. 
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Taking into account the entire population of software and documentation units, 

their structure can be expressed as a (partly directed) colored graph, where each edge 

represents some dependency between units and the color of an edge represents a 

dependency kind. Some dependencies in this graph form subsets of 

software/documentation units, in particular, configuration dependency, definitional 

dependency and stylistic dependency. Some dependencies can be stored within a 

metabase repository. Other dependencies are more relevant to a software configuration 

repository. 

In summary, the properly defined schema evolution problem should establish 

dependencies between software and documentation units. It should clearly subdivide the 

dependencies between a metabase repository and a configuration repository, and should 

clearly determine benefits of storing the information on dependencies for particular 

phases and aspects of the software life cycle, including the software change 

management. None of the abovementioned aspects of schema evolution are taken into 

account in the metamodel defined by the ODMG standard. This suggests that the 

approach to schema evolution assumed by ODMG does not follow the principles of 

professional software development. Unfortunately, the last statement also concerns the 

majority of papers devoted to schema evolution. 

Concluding, the schema evolution problem far exceeds the pure problem of 

metadata management and should be considered as a part of software change and 

configuration management. While some repository-updating operations would indeed 

be useful, e.g. adding a new attribute or adding a new class, the operations do not solve 

the essential problem. The major problem of schema evolution concerns altering a 

database and – most of all – altering applications that operate on the database. This 

problem is related to software engineering rather than to the pure database domain. 

3.6 Separation of concerns 

The importance of this issue (outlined in the previous chapter) seems to be 

unquestionable. However, in case of DBMSs two factors need to be noted. Firstly, a 

DBMS is by its nature a tool less generic than a general-purpose programming 

language. In effect, some of the features being potentially a subject of aspects specified 

by a programming language are fixed in a DBMS in a form of its internal mechanisms. 
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Secondly, the main issue of an ODBMS metamodel is its overall complexity. An aspect-

supporting mechanism may appear not worth of the cost of maintaining additional 

constructs. Those pros and cons are further investigated in the next chapter. 

3.7 Ontology 

As already suggested, it is also necessary for a database schema to include 

information forming its ontology. Even if such information were to be used during 

human-assisted resource discovery and integration rather than by autonomous agent 

software, it is obvious that much more information than just structural constraints and 

interface signatures is needed. However, such descriptions seem to be to a large extent 

domain-specific and thus difficult to fix in the form of standardized format. Thus the 

description structure should be open and allow for unambiguous vocabulary 

specification, as suggested by the RDF specification outlined in the previous chapter 

[60]. Having specified a flexible structure of such description, a choice concerning 

vocabulary standardization can be made. The options are either a very general property 

set like the Dublin Core Metadata Element Set [11] or a family of domain-specific 

profiles in the spirit of the OMG Domain Specifications, or a combination of both 

approaches. 
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4 Proposed features of the DBMS metamodel 

In this chapter, some general directions for the construction of database 

metamodel are presented. The aim is to make it as simple as possible, flexible and open 

for future extensions. Some of the more specific features and issues of such metamodel 

are also addressed. 

4.1 Metadata manipulation language 

There is an opinion that the SQL language has been the key feature that brought 

the broad acceptance of relational databases. At the same time the limitations of the 

ODMG’s OQL (Object Query Language), a very limited support of this language by 

commercially available ODBMS and definitely secondary role of that language 

assumed by the vendors, seem to be an important obstacle for popularization of the 

object databases [7]. 

For this reason, the general assumption of this work is that a fully-fledged query 

language equipped with imperative constructs is necessary as the main (and usually 

sufficient) mean of implementing database applications [54]. This would make the 

general-purpose programming languages an auxiliary tool, needed only to realize a 

specific tasks not supported by the database language. Such a big conceptual change 

makes many of the solutions suggested in this work further from the current ODMG 

proposal than they could be. Moreover it raises questions about the feasibility of a wider 

acceptance of a new language. Anyway, such change seems to be indispensable in order 

to rebuild the currently low-level object database interfaces, to make them comparable 

to powerful tools available for relational database systems in terms of programmer’s 

productivity. 

The usage of such language would of course also concern schema. A standard 

generic set of operations for metadata search and manipulation (together with their 

allowed usage scenarios) should be defined. A predefined set of methods is a bad 

solution as it contributes to the metamodel complexity while not guaranteeing the 

completeness of functionality. Such an approach is assumed in [51], where a special 

metamodel language MetaOQL is proposed. However, after defining catalogs as object-

oriented structures, they can be interrogated by a regular OQL-like query language, 
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extended by manipulation capabilities, e.g. as proposed in [55]. Because the structure of 

the catalogs can be recursive, it is essential to provide corresponding operators in a 

query/manipulation language, such as transitive closures and/or recursive procedures 

and views.14 These operators are not considered for OQL. So far, only the object query 

language SBQL of the prototype system Loqis [57] fully implements them. Such 

operators are provided for SQL3/SQL1999 and some variant of them is implemented in 

the Oracle ORDBMS. Moreover, to make database applications portable the high-level 

catalog structure must be the subject of the standard. 

The above suggestions support the assumed simplicity and minimality of 

programmer’s interface. A similar solution is provided by the SQL-92 standard for 

relational databases, where catalogs are organized as regular tables accessed via regular 

SQL. Using the same constructs to access the database and the metamodel repository 

would not only make it easier for programmers, but would also be advantageous for 

performance due to utilizing a query optimizer implemented in the corresponding query 

language. 

In case of data items that are to be accessed in a number of ways it is critical to 

provide a fully universal generic interface. Even an extension to the current collection 

of methods proposed by ODMG cannot guarantee that all requests are available. 

Moreover, programmers should be able to create their own access/manipulation 

abstractions (methods, views, procedures, etc.) and store them as a part of the metadata 

repository. In summary, this suggests the solution, where the metadata repository could 

be interrogated and processed by a universal query/programming language a la PL/SQL 

of Oracle or SQL3/SQL1999. This solution also addresses a part of the schema 

evolution topic that deals with changing the state of the metabase repository. 

4.2 Simplifying the metamodel 

As it was already emphasized, the main problems with the current metamodel 

definition from ODMG results from its size and redundancy, making it too complicated 

for implementation and usage by programmers. There are two general means to reduce 

the complexity of metamodel access. Firstly, the removal of some inessential concepts 
                                                 
14 Again, such features are applicable also to regular data. This leads to the conclusion that the metadata 
and regular data can be accessed in a uniform way, except for additional constraints on manipulation of 
the former. 
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can be considered. Secondly, the remaining concepts should be arranged into a structure 

guaranteeing simplicity of its access and flexibility of its future modifications. 

Minimality of a metamodel 

There are several options to reduce the overall number of metamodel concepts. 

The simplest improvement in this direction is the removal of concepts that are 

redundant or of limited use. For instance, the removal of the set concept can be 

considered, because the multi-set (bag) covers it and applications of sets are marginal 

(SQL does not deal with sets but with bags). Another recommendation which can 

considerably simplify the metamodel (as well as a query language) concerns object 

relativism. It assumes uniform treatment of data elements independently of a data 

hierarchy level. Thus, differentiating between the concepts of object, attribute, 

subattribute, becomes secondary. Some simplifications can also be expected from the 

clean definitions of the concepts of interface, type and class and their interrelations. 

An important source of redundancy of the ODMG standard is the approach aimed 

to directly support different language bindings. This is another argument in favor of 

introducing a single, unified database language in the spirit of PL/SQL as a main and 

self-dependent mean of manipulating both regular data and metadata. 

Flattening a metamodel structure 

The basic step toward simplifying the metamodel definition concerns flattening its 

structure. Separate metamodel constructs like Parameter, Interface or Attribute can be 

replaced with one construct, say Metaobject, equipped with additional meta-attribute 

kind, whose values can be strings “parameter”, “interface”, “attribute”, or others, 

possibly defined in the future; Fig. 6. 

This approach radically reduces the number of concepts that the metadata 

repository must deal with. Moreover, it supports extensibility, because a new concept 

means only a new value of the attribute “kind”. The metabase could be limited to only a 

few constructs, as demonstrated in Fig. 7. Although this meta-schema does not support 

some useful concepts (e.g. complex and repeating meta-attributes, attributes of meta-

relationships), it constitutes a sufficient base for the definition of the majority of 

constructs provided by the ODMG metamodel. To provide complex/repeating meta-

attributes the meta-values can be extended in the XML style. 
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Attribute
name: "empNo"

Specification of concepts Instances of concepts

Interface
name: "Person"

ODMG solution: Interface
name: string

Attribute
name: string

Flattened version: MetaObject
name: string
kind: string

MetaObject
name: "Person"
kind: "interface"

MetaObject
name: "empNo"
kind: "attribute"

 

Fig. 6. Original and flattened ODMG concepts 

MetaObject
name: string
kind: string

MetaValue
value: string

MetaAttribute
name: string

describedElement
metavalue

instance
description

*
*

source target

MetaRelationship
name: string

* *

 

Fig. 7. Concepts of the flattened metamodel 

Fig. 8 presents a simple ODL schema and Fig. 9 and Fig. 1015 present one 

possible state of the schema repository according to the metamodel presented in Fig. 7. 

Number of objects = 19Number of objects = 1456

*

Person
name

Employee
empNo [0..1]

Department
deptName

works_in employs

 

Fig. 8. A simple ODL schema 

The large part of the presented metadata is used to define appropriate object data 

model constructs. In order to define a standard metamodel, the flattened metamodel has 

to be accompanied with additional specifications, which should include:  

                                                 
15 Those examples use metadata concepts following the original ODMG terminology. 
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• Predefined values of the meta-attribute “kind” in the metaclass “MetaObject” (e.g. 

“class”, “interface”, “attribute”, etc.); they should be collected in an extensible 

dictionary. 

• Predefined values of meta-attributes “name” in metaclasses “MetaAttribute” (e.g. 

“count”) and “MetaRelationship” (e.g. “specialization”). 

• Constraints defining the allowed combination and context of these predefined 

elements. 

A standard metamodel should define the aforementioned values and constraints of 

an object data model together with the most important additional data elements required 

by functionalities of an ODBMS schema. 

Flattening the metamodel makes it possible to introduce more generic operations 

on metadata thus simplifying its usage by designers and programmers. Flattening also 

supports extendibility, as it is easier to augment dictionaries than to modify the structure 

of meta-interfaces. Simplification of the metadata structure can support the run-time 

performance and maintenance of the metamodel definition. 
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name: "Employee"
kind: "interface"

MetaObject
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kind: "interface"

MetaObject
name: "empNo"
kind: "attribute"

MetaObject
name: "employs"
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MetaValue
value: "1456"

MetaValue
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MetaValue
value: "*"

MetaValue
value: "*"

MetaValue
value: "yes"

MetaValue
value: "*"

MetaValue
value: "yes"

MetaValue
value: "yes"

MetaValue
value: "yes"

MetaAttribute
name: "count"

MetaAttribute
name: "nullAllowed?"

MetaAttribute
name: "cardinality"

MetaAttribute
name: "root?"

 

Fig. 9. A metamodel instance: the usage of meta-attributes 
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Fig. 10. A metamodel instance: the usage of meta-relationships 

4.3 Conceptual view of the metamodel 

As already mentioned, the required simplicity of database schema structure is 

contradictory to the descriptive role of metamodel, which emphasizes the need of 

metamodel expressiveness. Thus the conceptual view of discussed metamodel 

constructs is presented in a style of the UML metamodel. This form is used here for 

descriptive purposes only. The way of transforming such structure into the flattened 

form used during implementation is provided. 

The base for metamodel definition 

The style of metalevel definition chosen here, and represented e.g. by the OMG 

UML and MOF (Meta Object Facility) standards, follows the common four-level 

approach to metamodeling (see e.g. [16],[39],[41]), where the entities constituting a 

system are categorized into four layers: user data, model, metamodel and meta-

metamodel. The user data are structured according to the definition provided by a 

model, and the model is defined in terms of a metamodel etc. The meta-metamodel is 

intended to be the minimum set of intuitive constructs (having a direct mapping to the 

implementation structures), that are used to define a metamodel. Such a multi-level 
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metamodel definition, although inherently too complex to be directly implemented, 

allows to declare and discuss the introduced constructs in a clear way. The basic role of 

fourth layer (that is – a meta-metamodel) is to describe constructs used for the 

metamodel definition as well as to define means of extending the metamodel definition. 

However, in case of a DBMS metamodel, both issues seem to be of smaller importance 

because of following reasons: 

• Unlike in a modeling language, where the model constructs can be perceived as 

volatile, the metamodel of DBMS materializes them in two ways. The metamodel 

has to be related to the storage model (see Fig. 11) in order to define relationships 

between regular data and metadata. Secondly, metamodel constructs have also to be 

hardwired into the database query language definition. 

• Since a DBMS needs appropriate implementation of each introduced metamodel 

construct, the ability for a final user to extend the provided data model would be 

either very limited or very costly in terms of introduced complexity. 

Based on the above arguments, it may be assumed, that the metamodel (M2 in 

Fig. 11), together with its mapping to the storage model, must be integrated into the 

DBMS implementation. The absence of an explicit definition of the meta-metamodel 

layer does not exclude the ability to extend its contents, especially because the flattened 

form if well suited for any extensions. However, the abovementioned limitations hold, 

making the more significant metamodel extensions the domain of DBMS vendors 

rather. The mentioned mapping to the storage model must determine (Fig. 11): 

• How a given kind of metadata (e.g. a Type metaobject named “Employee”) would 

be represented in the object storage (e.g. Composite Object). In Fig. 11 this mapping 

is shown using the «representation» dependency that should be understood as: 

“every metaobject from model (that is M1 entity) describing a type will be stored as 

a Composite Object”. 

• How the instances of a given kind of metadata (e.g. an object of type Employee and 

its attribute Name having the value “Smith”) would be represented (appropriately: 

Composite Object, and Primitive Object). This mapping is denoted in Fig. 11 by the 

«instance’s representation» dependency that says: “every regular data element (M0 

level entity) being an instance of Class metaobject from model (M1 entity) will be 
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stored as a Composite Object, while each regular data element being an instance of 

Primitive Type metaobject from model will be stored as a Primitive Object”. 

name : String

Employee

name = "Smith"

Employee

Object

PrimitiveObject CompositePointer

1

*

<<stored_as>>

<<stored_as>>

«instance»

ClassSubobject spec
1*

«instance»

type

1

usage
*

«instance»

PrimitiveTypeType

<<representation>>

<<instance's_representation>>

<<instance's_representation>>M2

M1

M0

<<stored_as>>

<<stored_as>>

 

Fig. 11. The dependencies between metamodel (M2) and the object storage model 

As can be seen, the «stored as» dependencies are derived from the combination of 

appropriate «instance of», «representation» and «instance’s representation» 

dependencies. The types of metadata, as well as the storage model primitives shown in 

this figure are exemplary only: they are chosen for their simplicity and they not 

necessarily fit the proposed metamodel and storage model assumed in this work 

(described in following sections). The main purpose here is to emphasize the connection 

between the metamodel and the storage model that also seem to conceptually belong to 

the M2 level. 

That is, every newly introduced metadata element must be considered in terms of 

its relations to the storage model. For example the dynamic object roles mechanism 

(discussed in more detail later in this work), would require not only an extension to 

metamodel, but also a new, specialized element and link in the storage model to 



www.manaraa.com

– 66 – 

distinguish the relationship of being a role from regular association or composition 

among objects [28]. 

Metamodel core concepts 

Fig. 12 shows an exemplary solution defining the core elements of the discussed 

metamodel. It is focused on the most essential elements of the object data model and, 

taking into account the different requirements concerning a database schema, it is by no 

means complete. Even with such reduced scope, the model becomes quite complex. As 

already stated however, this form makes it convenient to discuss some essential 

improvements introduced here and to compare them to the ODMG standard solutions. 

All basic metamodel concepts inherit from the MetaObject and therefore possess 

the meta-attribute name, as practically every metadata element needs this property. The 

most important branches of this generalization graph are Property, which generalizes all 

the properties owned by Interface, and Type (described later), which describe any 

information on database object’s structure and constraints. The procedure (method) 

definition is conventional. It allows for declaring parameters, events and return types (in 

case of a functional procedure). The parameter’s mutability determines whether the 

attribute is passed as “input”, “output” or “input-output”. The use of meta-attribute 

multiplicity in the StaticProperty metaclass makes it possible to abstract from the 

definition of the collection concept. 
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Fig. 12. Conceptual view of the proposed metamodel 
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Below, the most important features of the presented metamodel, especially those 

distinguishing it from the ODMG solution are enumerated. 

• Lack of method declarations. In contrast to the ODMG definition and similarly to 

the UML metamodel, there are no method declarations in the proposed metamodel 

definition. As explained earlier, a generic query/programming language is suggested 

for the modification or retrieval of the schema information. 

• Object relativism. For both the simplicity and flexibility of a DBMS it is desirable 

to treat complex and primitive objects in a uniform way. A Type concept, serving as 

a “common denominator” for both the complex objects’ interfaces and primitive 

types has been introduced. Distinguishing Subobject Link from the Association Link 

allows for potentially arbitrarily nested object compositions. 

• Lack of the extent concept. That concept, present in the ODMG specification 

seems to be rather problematic assuming object relativism with arbitrarily deep 

object compositions or when considering a distributed environment. Particular 

instances may have different meaning depending on their location within the data 

structure. Thus if every type declaration were connected with single, explicit extent, 

such situation would result in redundant type definitions. Moreover, if some 

instances exist as subobjects of different higher-level complex objects, separating 

them from their context and grouping within a single collection would be of no use. 

On the other hand, a distributed environment would make problematic performing 

the operations are checking the conditions that require access to all instances. For 

those reasons, in this work it is assumed that instances of declared types can be 

placed only within the separately declared locations. 

• Information on global variables declarations included in the schema as a 

separate construct. For some purposes (e.g. the ownership and security 

management), the schema has to be aware of its instances. In absence of the extent 

concept, the declaration of root object entry has to be introduced as a separate 

construct. Note that within the metadata structure presented, such root declarations 

are treated almost identically as the subobject declarations provided within Interface 

definition. 
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• No explicit collection types. With the multiplicity declaration describing 

associations and sub-attribute declarations, the introduction of the collection concept 

into the metamodel can be considered redundant. The required properties of a 

collection can be described by the multiplicity attribute value of the Static Property. 

In some cases it would be also necessary to distinguish between the list and multiset. 

This can be accomplished by adding a meta-attribute “isOrdered”. 

• Application of the terms “Interface”, “Type” and “Class”. Type can be described 

as a constraint concerning the externally visible structure of an object, as well as the 

context of its use. The role of an interface is to provide all the information necessary 

to properly handle a given object. Although the typing information remains the 

central component of an interface definition, the scope of the latter has to be much 

wider. In the presented metamodel it specifies public structural and behavioral 

properties, including raised events and possibly other properties. Class is an entity 

providing implementation for interfaces declared in a system. Every registered class 

contains all properties of a regular interface, which specify the complete list of 

features provided by the implementation. Every interface not being a class defines a 

subset of the features provided by its base class. In the other words, an interface 

narrows the class’s default interface definition. 

• Bi-directional associations. Although the reverse association of the Association 

Link is optional, which suggests that unidirectional links could occur, this concerns 

only the visibility of a given link through the interface. In order to support the 

maintaining of referential integrity, every created Association Link requires also a 

creation of reverse link. 

Transforming conceptual metamodel into the flattened form 

The conceptual view of metamodel like the one presented above needs to be 

transformed to the flattened form, which is more appropriate for direct implementation. 

In practice, this causes moving the majority of meta-metadata into the metadata level. 

The resulting schema (see Fig. 7) is not only very small in terms of its structure, but also 

it uses only the simplest concepts in its definition. This sub-section provides an 

overview of the implications of using such a simplified structure. 
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The process of mapping the metamodel structure like the one shown in the 

previous section can be described by the following rules: 

• Every concrete entity from the conceptual view of a metamodel is reflected into the 

separate value of meta-attribute kind (see Fig. 7) of MetaObject. 

• Inherited properties and constraints are imported into the set of features connected 

with a given value of kind. 

• The meta-attribute name (required for every entity of the proposed metamodel) is 

mapped into the meta-attribute name of MetaObject. 

• Every meta-attribute other than name is mapped into an instance of MetaAttribute in 

“flat” metamodel. All instances of MetaObject having an appropriate kind value are 

connected (through the MetaValue instance) to a single instance of MetaAttribute of 

a given name. MetaValue connects exactly one MetaObject with exactly one 

MetaAttribute used to describe that MetaObject. 

• Every association existing in conceptual metamodel is reflected into the separate 

value of the meta-attribute name of Meta Relationship, and the second, other value, 

to provide the reverse relationship.16 

It is now possible to summarize the meaning of the operations that can be 

performed on the flattened metamodel. Below the constructs are enumerated and the 

meaning of generic operations that can affect them is described. 

• MetaObject: 

− Add / remove an instance (the combination of values of “name” and “kind” meta-
attribute is unique among the meta-objects within a given scope) => schema 
modification; 

− Introduction of a new value of “kind” or its removal => change to the metamodel 
of a given tool; 

− Add / remove connected MetaRelationship instances => schema modification. 

• MetaAttribute: 

− Add / remove an instance (the values of “name” are unique among 
MetaAttributes describing the MetaObjects of a given kind) => change to the 
metamodel. 

                                                 
16 Note the difference in the nature between the meta-attribute “name” of MetaObject and the meta-
attributes “name” of MetaAttribute and MetaRelationship. The former are the names defined for a given 
model, e.g. “Employee”. The latter are determined by a metamodel, e.g “NoOfElements” or 
”InheritsFrom”. 
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• MetaRelationship: 

− Add / remove an instance => schema modification; 
− Introduction of a new value of “name” or its removal => change to the 

metamodel. 

As can be seen, due to moving the majority of meta-metadata elements into the 

metadata level, some of the operations identified above have more significant 

implications than just schema modification: they affect an established data model. Since 

with established DBMS, the majority of metamodel concepts must not be allowed to 

change, those operations are of rather limited use during the normal usage of a system. 

However, their straightforwardness makes it relatively easy to modify and extend the 

definition of the standard metamodel, that is, to realize “model tailoring” as phrased in 

[58]. 

Another important remark concerns the constraints connected with a given kind of 

metaobject. The metamodel form presented in Fig. 12 requires some well-formed rules 

that were not explicitly formulated even on that complex diagram. However, in case of 

the flattened metamodel, such additional constraints become critical, since practically 

no constraints (like e.g. multiplicities or the types of connected meta-entities) are 

contained in the metamodel structure. Therefore, in addition to the set of predefined 

values for meta-attributes like kind of MetaObject or name of MetaAttribute or 

MetaRelationship, the standard needs to define the constraints specific for each such 

value. 

 

4.4 Database schema support for SCM 

The main challenge of today’s software development is dealing with complexity. 

In case of SCM this concerns especially the complexity of interdependencies among 

configuration items. Therefore, in order to better support the SCM aspect, the database 

metamodel definition should provide means to simplify the management of dependency 

information. There seem to be two general ways of achieving this objective: 

• Encapsulation / layered architecture. Applying the encapsulation, both to narrow 

the interface of given classes, as well as to isolate the whole layers, allows to 

shorten the dependency paths. 
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• Dependency tracking. Even if the dependencies don’t span across many 

configuration items, they still need to be recorded in a way that would guarantee 

completeness of such information and ability to easily extract it. 

Both of these postulates are rather intuitive and are presently treated as a sine qua 

non in the development of large information systems. However, it is worth emphasizing, 

that dependency between applications and database schema constitute a special kind of 

dependency, which would be much more effectively handled when supported by the 

core DBMS mechanisms. As already stated, certain kinds of dependency information 

concern directly the database schema elements. Storing that information within the 

schema would not significantly complicate the metadata structure.17 At the same time, it 

would advantageous, since the database dependency description would be centralized 

and, thanks to incorporating such mechanism into a database system, the dependency 

recording would be enforced by the DBMS itself. 

Dependency kinds relevant to the metabase 

This subsection revisits those of earlier enumerated dependency kinds that were 

considered relevant to the metabase, looking for optimum way of storing such 

information within DBMS schema. 

Forward dependency and backward dependency 

Since these kinds of dependency are mutually symmetrical, they could be 

registered using single construct, e.g. bi-directional association. Assuming traditional 

architecture, of special interest are the dependencies between external applications and 

the database, as well as dependencies among the database entities (the DBMS 

dependencies of other system elements, as the least critical, would not be tracked). 

The target of the dependency association would be any (that is, behavioral or 

static) property of the database. The role of a dependent element would be played by 

either DBMS native procedure / method, or by an external application’s procedure or 

module. Therefore, in addition to the regular database schema elements and dependency 

association, it is necessary to introduce a new construct, identifying an external 

procedure that the schema would be otherwise not aware of. 

                                                 
17 Making the database aware of its dependent applications has previously been suggested e.g. in [13] 
through the concept of “application table”. The intent of introducing that construct was slightly different 
though. 
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The optimum level of granularity of such information should be determined. The 

dependent element would be always a procedure / method. However, in case of external 

applications’ dependencies, it could be practical to use a higher level, e.g. a whole 

application module. The target of a dependency can be either an interface or – assuming 

more detailed tracking – all its properties that a given routine accesses. 

Side effect dependency 

All requests to properties that are non-local for a given procedural unit or 

interface, can be qualified as side effect dependency. It is desirable to distinguish 

between passive and active side effects (the latter result in the database’s state 

modification) and to include this information in the metabase. 

Additionally, it is necessary to note, that when an interface definition is 

distinguished from the structure containing its instances, both the whole metamodel as 

well as the dependency tracking features, get more complex. The assumption that the 

user data definition is inseparable from the set of its instances is characteristic for the 

traditional relational model and contributes to its simplicity. However, as explained 

earlier, this approach poses some limitations thus it will not be followed here. 

In that case it is not enough to connect the side effect dependency information 

with particular interfaces. Since the instances of a given interface can be stored in 

different globally accessible structures, the side effect dependency record should 

identify the database’s global property declaration the manipulated properties are 

accessed through. For example one would like to know not only that a given procedure 

refers to objects of type Product, but also, that it operates e.g. only on objects stored 

within the global variable avaliableProductsCatalog. Therefore, in order to describe the 

side effect dependency it is necessary to identify the global variable a given procedure 

uses to begin its navigation, as well as all properties it then uses in order to get the 

reference to its target. Each such dependency concerning static property can be 

described as a read-only or updating. In case of database procedures, the analogous 

information would also be stored as a property of a given method in order to easily 

identify methods whose invocation does not change the database state. 
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Parametric dependency 

This kind of dependency seems to be easier to handle than the side effect 

dependency, because here the dependent procedure does not have to be aware of the 

origin of provided parameter. No matter what kind of parameter it is: either the 

procedure reads, updates or returns newly created instance, it is only necessary to 

guarantee, that the definition of a given type stored in database metamodel has not been 

changed in a way that affect that procedure. In this case the target of dependency link 

would be simply a type definition the parameter refers to. 

Proposed metamodel extensions 

Providing features for storing the dependency information requires rather minor 

additions to the overall metamodel definition. This is thanks to the fact, that all 

constructs needed to describe the target of such dependencies are already part of the 

metamodel. Fig. 13 shows the necessary constructs added to the fragment of the 

metamodel from Fig. 12. 
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Fig. 13. A fragment of the proposed metamodel, with the dependency management constructs 
included 

In order to record also the dependencies of elements located outside the DBMS 

responsibility (external applications using the database), a Behavioral Element concept 
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has been added as a generalization of the Procedure Definition. Both elements can be 

the source of dependency relationship: the former (more general) can denote an external 

application’s elements, while the latter always refers to the native procedures stored 

within the DBMS. 

As suggested, the side effect dependencies are recorded for all elements that are 

used in navigation or manipulated. For each such dependency a metaobject of 

SideEffectDependency, connecting the dependent element description with dependency 

target is created. The isQuery meta-attribute provides binary information on the 

character of dependency: either pure read / navigation (value yes) or possibility to 

modify a given element (value no). Note, that it is not necessary to record the exact path 

of navigation. It is enough to determine, whether any part of a given procedure refers to 

a given property or not. The isQuery value is optional, because when the dependency 

target is a procedure, this information is not applicable. Parametric dependencies 

descriptions refer to type definitions (that is, metaobjects representing primitive types or 

interfaces). Other important dependencies relevant to the metabase (e.g. event 

dependency and definitional dependency) also can be derived from the outlined 

metamodel structure. 

Figure below (Fig. 14) presents an exemplary fragment of a schema, showing the 

side-effect dependency of an external procedure UpdatePrices. That method refers to a 

global variable OfferedProducts, which is capable of storing arbitrary number of objects 

described by the interface Product. Through this interface, it can modify the subobject 

(attribute) Price of type Currency. In contrast, the global variable OfferedProducts is 

never modified by this procedure (it is used only for navigation). 
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Fig. 14. An exemplary fragment of the DBMS schema, containing the side effect dependency 
information for an external procedure updatePrices 

Collecting the dependency information 

When recording the dependency information, it is necessary to face the problem 

similar to the one encountered between SCM system and other tools used in the 

software development: the development tools may lack the ability of providing the 

information needed for documenting the software configuration. Inability to 

automatically extract all the dependency information makes it necessary to manually 

document it, which can be considered as much less reliable. Thus almost all the 

advantage of storing it within the schema instead of SCM repository would be lost. 

There are various options of realizing such automatic dependency analysis. The 

task is of reflective nature and solution depends on the way the database access is 

performed. For example, the DBMS could record the dependencies during one phase of 

the system testing and verify the completeness of collected information during further 

tests. For each recorded dependency it would need to receive some id of the procedure 

or unit that performs the database call. Note that adding that functionality to a DBMS 
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that was not designed with such feature in mind could be problematic or at least result 

in a rather inconvenient usage scenario. 

Such identification process should be separated from regular database security 

mechanism in order to not to deteriorate the DBMS performance during regular 

operation. 

The functionality considered here also shows that the usage of metabase is not 

limited to internal DBMS implementation and that it thus should be realized as an 

externally available feature.  

 

4.5 Extending ODBMS data model: dynamic object roles 

As it was suggested in the previous chapter, the metamodel in the scope defined in 

the ODMG standard needs to be prepared for various future extensions, which can be 

subdivided into the following kinds: 

• Object data model extensions towards more powerful and expressible constructs; 

• Database feature extensions like active rules, stored procedures, views, security 

mechanisms etc.; 

• Vendor-specific features not covered by standard; 

• Limited means of extending metadata available for developers using a DBMS. 

This section is intended to discuss the first from abovementioned kinds of 

extension. While it is impossible to anticipate the future evolution of the mainstream 

object model, there is at least one notion, namely – dynamic object role, whose 

importance and amount of related research makes it strongly desirable to consider in 

current proposals of an ODBMS metamodel. The notion is very intuitive and it is even 

featured as an object-oriented modeling construct equally fundamental as objects and 

associations among them [50]. 

Although very simple, the dynamic object role concept proves to be very useful 

for conceptual modeling, where it allows for more adequate representation of real-world 

dependencies, while avoiding the multiple-inheritance pitfalls. 
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The research in dynamic roles resulted in a large number of proposals assuming 

both object-oriented as well as other data models [3],[18],[59]. While presentation of 

those approaches is outside the scope of this work, looking at the problem from the 

database metamodel point of view requires formulating of the following remarks: 

• Any proposal of such extension, more or less directly aimed towards standardization 

and commercial usage, needs to take into account the current state of the art. As far 

as it does not limit the clarity, usefulness or generally – the overall validity of 

proposed feature, its definition should refer to currently used solutions. 

• The proposal concerning data model extension needs to be complete in the sense, it 

needs to provide both conceptual modeling constructs, as well as the ability to 

directly implement them. Both factors need to be considered when incorporating the 

concept into database metamodel. 

For the abovementioned reasons, the following discussion of dynamic object roles 

is limited to the overview of related solutions that are currently broadly used and to the 

proposal of extending database metamodel with that construct in a way that keeps 

compatibility and semblance to already existing notions. 

Dynamic and multiple inheritance problem 

This subsection provides an overview of the most popular solutions and problems 

of multiple and / or dynamic inheritance modeling and implementation. In absence of 

more suitable constructs, these notions are often used to model simpler cases of 

statically of dynamically assigned multiple roles of an object. The popular examples are 

a person, who can at the same time be a student, an employee, a club member etc., 

being able to gain and lose such roles over time; a building serving different purposes 

etc. An example of a multiple though rather static classification can be a vehicle 

specialized according to terrain, powering system, its function etc. 

Each of above examples can be described as a single object having different sets 

of properties connected with particular aspects of its existence. In case of a multiple yet 

static classification, the most straightforward of traditional approaches to address it 

would be a multiple inheritance. At the same time however, this solution bears the 

largest number of problems and limitations: 

• Possibility of name conflicts among inherited features. 



www.manaraa.com

– 78 – 

• Inability to dynamically reclassify object. 

• Inability to describe more than one role of the same type (e.g. instance of a class 

Employee or Student-Employee can not store information on person’s employment 

in two different companies). 

• Combinatorial growth of the number of classes. 

In case of singular inheritance the situation is even worse, since no code reuse 

occurs. That is, it becomes necessary to create “copy & paste” class definitions, where 

in addition the substitutability (e.g. between “Student-Employee” and “Student” class 

instances) can be lost. 

The above remarks confirm that mixing different aspects of a given object’s 

description into a single class is not a proper approach. The UML allows for specifying 

different specialization hierarchies for each criteria and even marking some of them 

dynamic. Such multidimensional classification results in much clearer model. However, 

this part of the UML specification is not very detailed and, what is the most important, 

implementation tools do not support such features, thus the model loses its clarity 

during implementation. 

Another notion bearing some of the desired features are Java’s inner classes. Such 

class is defined within the scope of its outer (base) class and its instances possess links 

to their base objects (being the instances of outer class). Thus such inner class can 

access properties of its base class in a way similar as if it were a subclass. Instances of 

inner class can be referenced either from inside of a base class’s object (that is, being its 

attributes) or anywhere outside its base object (in the latter case making it unaware of its 

dependent instances). Thus the following properties, resembling the dynamic object role 

concept can be noted: 

• Inner class can encapsulate some distinguished parts of object properties. 

• Inner class’s methods have access to the state and behavior of the base object as if 

they were defined in the outer class or its subclass. 

• Arbitrary number of inner class instances connected with a given object can be 

created or removed during runtime. 
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• Instances of inner class connected with a given object of outer class are separated 

from each other, so no name conflict can occur. 

As can be seen, the construct has many interesting features and can be useful in 

partitioning and encapsulating object’s properties. However, this notion is quite far from 

widely agreed features of dynamic object roles in the following terms: 

• There are no means of reassigning inner class object to be connected with another 

outer class’s instance. 

• Creating inner class definition requires access to the code of the outer (base) class. 

This breaks the “Open-Closed” principle concerning class design. 

• Private properties of outer class are accessible to inner class’s methods, which is 

probably undesirable in case of object role. 

• The inner class’s access to the properties of outer class does not provide the former 

with interface of the outer class. Thus there is no substitutability between outer and 

inner class’s instances. 

Other interesting features come from the aspect-oriented programming (AOP) 

language extensions. As mentioned in chapter 2, two general kinds of extending 

features are available: 

• “Pointcut” and “advice” declarations modify certain elements of program’s 

control flow by augmenting or bypassing specified kinds of statements.  

• Introduction is capable to substantially change the definition of a given class, both 

in terms of behavior (new or overridden methods) as well as the structure (additional 

attributes).  

The latter feature allows to isolate properties introduced to a class design on 

behalf of certain aspect or role of object’s existence. However, it is necessary to note, 

that this mechanism is purely static and, although very powerful and advantageous in 

terms of maintenance, it is not suitable for implementing dynamic object roles. Its 

capabilities in this area seem to be analogous to static multiple inheritance. 

The above overview suggests that although there are a number of already adapted 

similar solutions, none of them can satisfactorily address the issue of dynamic object 

roles, which are currently implemented in an indirect and rather low-level way (see e.g. 
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[15]). Considering the fundamental importance of that notion, it is possible to conclude 

that the dynamic roles should be introduced as a separate new construct both into 

modeling and into implementation languages and the DBMS area. 

Features of dynamic object role 

As suggested, dynamic object roles are usually considered as a mean to eliminate 

the shortcomings of inheritance mechanism provided by common OO programming 

languages and DBMS. Modeling notations often provide quite sophisticated kinds of 

generalization / specialization relationship (e.g. multi-aspect specialization, dynamic 

classification etc.), while implementation tools are usually limited to static, multiple or 

even singular inheritance. Moreover, even the means existing in modeling languages 

(e.g. UML18) are not exhaustive or not defined precisely enough to satisfactorily 

describe dynamically changing roles of objects. Thus the dynamic object role concept 

needs to be treated as a new quality both in modeling and implementation area, since 

analogies to other adopted solutions are quite superficial and may be misleading. 

The simplest motivation behind that concept can be formulated as introducing a 

highly intuitive notion, capable to cover features of multiple, multi-aspect and repetitive 

inheritance while supporting its temporality. More thorough overview of the features of 

role mechanism that have been suggested in literature, provided in [50], enumerates the 

following properties: 

• A role possesses its own properties and behavior, thus can be treated as a type. 

• Different roles may share structure and behavior. This means, the role can make 

available the properties defined in its base role or base object, by means of 

inheritance or delegation. 

• Roles depend on relationships. That is, model defines a pattern, under which object 

of certain type can be connected to other objects within the pattern, and this results 

in its playing a given role. 

• An object may play different roles simultaneously. This makes the role mechanism a 

mean of a multiple classification. 

                                                 
18 The UML standard has not defined support for dynamic object roles so far. The role concept exists in 
the specification in a number of other meanings, notably – the named association end, as well as a slot in 
collaboration specification (see [49]). 
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• An object may play the same role several times, simultaneously. This reaches 

further than a multiple classification since it assumes that an object can possess 

more than one set of properties defined by a given role. 

• An object may acquire and abandon roles dynamically and the sequence in which 

roles may be acquired and relinquished can be subject to restrictions. 

• Objects of unrelated types can play the same role. This seem to be natural, however 

it may be little problematic to assure consistency if a role implementation is 

assumed to be dependent on properties of its base object. 

• Roles can play roles. This again suggests the role to have similar nature as a base 

object, as it may be viewed as such by some other role.  

• A role can be transferred from one object to another. This bears semblance to 

UML’s [41] composition relationship, where although the component is dependent 

on composition, it can be transferred to another one. On the other hand, an 

assumption that a given role can for a certain time remain unconnected to any object 

(like e.g. vacant position of a department manager), may be problematic (as above) 

concerning dependencies on base object properties. 

• The state of an object and its features can be role-specific. This assumes multiple 

views of particular object, dependent of a selected role. This probably should 

assume also possibility of overriding behavior in a way analogous to traditional 

inheritance. 

• Roles restrict access. Properties provided by the roles other than the currently 

accessed one are invisible. However, if access restricting assumes also hiding the 

properties of base object, this requires reconsidering of substitutability principle 

connected with traditional inheritance. 

Although some of those properties seem to be to some extent contradictory, the 

above summary constitute a quite clear specification of features commonly expected 

from postulated dynamic object role mechanism. 

Incorporating dynamic object role into the metamodel 

This subsection describes an attempt to introduce dynamic object role concept 

into conceptual view of previously sketched object database metamodel. The main 
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assumption is that although it needs to be a separate new construct, the new notion 

should be as far as possible “tuned” to existing data model concepts and mechanisms 

that support them. 

Since role should be able to complement all kinds of properties the base object 

possesses (e.g. subobjects (attributes), association links, behavior (operations), as well 

as the ability to have its own roles), this requires supporting it with a specification 

similar to that of a regular object. That is, an interface specifying role properties and a 

class implementing them are necessary. Additionally, the role type definition brings an 

additional constraint: role needs to be connected with its “player”, which can be a 

regular object or another role. Moreover, if a role is treated as a property a base object is 

aware of, a role multiplicity (like in case of attribute or association link), as well as 

applicability to exactly one base interface can be considered.19 Following this path 

requires very little change it the proposed metamodel (Fig. 15). 

Role interface becomes a special kind of Interface, distinguished by the fact that 

its instances, similarly like subobjects and association links are not independent (cannot 

be instantiated in separation from their base objects).20 

An important question concerning constraints imposed on the dynamic object role 

construct is if a schema should specify (and allow) exactly one interface as a type of a 

base object for each role specification. This constraint seems to be justified by the 

following reasons: 

• A role is indeed usually defined to extend the properties of exactly one object type. 

If there are more related types, they should have something in common, so 

generalization could be used as a role’s base. 

• Operations provided by a role interface can have their implementation dependent on 

particular properties (operations, attributes and association links) of the base object. 

• If a reference to a role is intended to support all the base object’s features, this flavor 

of substitutability requires appropriate type constraint. 

                                                 
19 It would be possible to go even further, by providing labels for partitioning object’s roles of the same 
type into distinct sets (e.g. person’s employee role partitioned into full-time and part-time). However, 
such feature does not seem to be worth of additional complexity. 
20 Although the metamodel diagram (see Fig. 12 for a whole picture) allows all properties to be global 
(through the root declaration), in case of roles this should be excluded by an additional constraint. 
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Fig. 15. Role concept incorporated into conceptual metamodel (updated fragment of Fig. 12) 

On the other hand, also more “loosely” connected roles can be considered. Such 

roles would make no assumptions on their base objects’ types and serve as a “handles” 

or “labels” for a number of otherwise unrelated objects. In such a case it is possible to 

go even further by allowing the instances of such “loosely connected” role interface to 

occur either as roles or as separate objects. That solution would effectively allow the 

following kinds of interfaces: 

• Interfaces describing base objects – which can be instantiated independently; 

• Independent role interfaces, whose instances can occur either as separate objects or 

as roles loosely connected with their base, which in turn may be constrained to be an 

instance of one of specific types (indicated in the role’s definition); 

• Dependent role interfaces, whose implementation does not depend on any base 

object’s properties, but the design constraints them to be always connected with a 

base of one of specific types; 
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• Dependent role interfaces, whose implementation requires access to a base 

object/role and which thus can be instantiated only as  roles connected with their 

bases (of particular type). 
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Fig. 16. Fragment of the proposed metamodel, introducing two kinds of dynamic object role 
definitions 

This makes necessary to distinguish two kinds of role declaration. The first kind 

of role definition would depend on its base object’s (or base role’s) interface 

specification. Thus it needs to be specified as belonging to a given base interface, as 

assumed in Fig. 15. Another kind of role would resemble regular object in the sense that 

it does not require any base element. However, its definition may explicitly specify an 

arbitrary number of interfaces as intended base types. A separate flag is necessary to 

indicate if instances of such role are allowed to exist as regular objects. To 

accommodate both kinds of roles, the proposed metamodel has been restructured, to 

identify the role definition through relationships rather than through the interface 

concept specialization. Fig. 16 presents the appropriate fragment of the metamodel 

diagram. Both kinds of objects (roles and regular objects) are described by interfaces. 

Interface’s association to the role link determines kind of its instances. If no such 

connection exists, interface describes a regular object. Otherwise it defines either a 

regular role, designed as an extension of other (base) interface, or autonomous role. In 

the latter case the isIndependent attribute determines if such role can exist as a regular 
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object or if it is required to be connected to a base. From a point of view of a base 

interface, such role was named a handle, as it is connected to a base object to serve 

certain purposes, without requesting any of its specific properties. 

As can be seen, this effectively results in three kinds of role dependency21 that 

need to be indicated in design, including class diagrams. Fig. 17 presents all those kinds 

of role dependency, introducing an ad-hoc UML-based notation to distinguish them. 

Note the existence of role multiplicity specifications. Example a) presents the strongest 

form of dependency, where role implementation depends on properties of its base 

(employee role must always be connected with a person object). All role dependencies 

are denoted by filled triangle, to exploit analogies to UML’s generalization and 

composition relationships. Example b) assumes that a role is implemented as self-

sufficient and is allowed to exist as separated from its base (dept manager roles can be 

referenced in a system, although they may denote a vacant position). This loose 

dependency is denoted by dashed line. Finally, example c) is a more constrained form 

of the case b). Here, although a role is also implemented as independent on any base, it 

is required to always be connected with a base, which instantiates one of specified 

interfaces (assignable resource has to describe either a car or a conference room). The 

{XOR} constraint enforces it. 
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/ busy
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*
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Fig. 17. Examples of different kinds of role dependency, introducing exemplary notation to 
distinguish them 

Because in case of such autonomous role the constraint specifying to which base 

interfaces it is applicable does not seem to be essential, a significant simplification of 

                                                 
21 The meaning of the word dependency can be twofold. Firstly, role’s implementation can be dependent 
on the interface defined for its base object. Secondly, in the objects layer the role is connected with its 
base object or base role. 
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the metamodel can be achieved by removing that specification. Then the role-specific 

metamodel elements would be limited to just one recursive association (or association-

class) over the Interface (similar to the one specifying static generalization-

specialization graph), as shown in Fig. 18. The regular (dependent) role interfaces 

would be distinguished by the existence of the link to its base. The autonomous role 

interfaces would not differ from regular object interfaces. Thus all non-abstract 

interfaces except the dependent ones, would be allowed to form arbitrary combinations 

using the “base-role” link. 
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Fig. 18. Simplified solution of introducing the dynamic role concept into the metamodel 

When a role extends or overrides the properties of its base object, a kind of 

substitutability known from traditional inheritance seem to be possible for language 

constructs dealing with roles. However, the analogy is quite superficial, and the link 

between role interface and its base interface requires in majority of cases substantially 

different treatment than regular generalization. Consider for example constraints on a 

regular generalization-specialization graph. Cycles are not allowed since the resulting 

structure would enforce mutually contradictory constraints on interfaces / classes within 

a cycle. Similar constraint is not obvious in case of a role dependency graph, if the 

weaker kind of dependency occurs. One could consider e.g. partial masking of object’s 

properties in a given context by “covering” them with items coming from an instance of 

its subclass. An exemplary usage of such construction in metamodeling is presented in 

the next subsection (see Fig. 19). Although this example is rather peculiar, it is possible, 

that if no serious conceptual problems occur, such specific structure could be of use in 

conceptual modeling or as a design pattern. 
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Use of the role concept in meta-modeling 

As mentioned, the dynamic role concept is assumed to be one of the fundamental 

abstractions of conceptual modeling. At the same time, the support for this original 

option in DBMS requires appropriate language extensions, as well as a specific 

primitive in the construction on database’s object store (see [28]). Additionally, 

concerning previous postulate, that metadata should be manipulated in a way analogous 

to regular data, leads to a question, if this new notion could be of use in metamodel 

definition. This is not obvious, since for the sake of simplicity some constructs (like 

operations or nested object compositions) are intentionally not used in the presented 

proposal. 

Dynamic object roles, although not essential for meta-modeling, seem to be well 

suited for describing some metamodel elements like e.g. class’s derived interfaces 

(perhaps also in connection with some authorization/access control mechanisms). 

Appropriate modification of conceptual metamodel is presented in Fig. 19. This would 

allow instances of a given class to be viewed through different interfaces, modifying an 

original class’s specification. 
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Fig. 19. Dynamic role mechanism used in the metamodel to define derived interfaces of a class 

Concluding, dynamic object role is an example of a prominent notion, which is 

very likely to be introduced into future standard metamodel definitions. Since it 

constitutes an extension of a core data model, a number of different areas have to be 

considered. Among them are the following: 

• conceptual modeling, including a graphical notation; 



www.manaraa.com

– 88 – 

• consistent and preferably limited change to an original metamodel definition; 

• DBMS query language constructs; 

• Database object store model; 

• Possible usage of newly introduced concept in modeling the DBMS metadata. 

Introduced notion needs to take into account and adjust to pre-existing solutions, 

however only as far as such compliance does not appear to be a limiting factor. 

4.6 Separation of concerns in a DBMS 

The ability to modularize different concerns of developed system, discussed in 

chapter 2, should be also considered in the context of a database metamodel. The base 

requirements can be formulated as follows: 

• Separate, single place for storing the code realizing a given requirement, which 

makes it reasonably easy to localize. 

• Ability to connect the concrete implementation of a requirement in a way that does 

not affect the original functionality and is completely or partly transparent for it. 

In some cases, an additional support from powerful reflective capabilities, as 

proposed for some programming languages, can be considered [6], in order to provide: 

• The meta level interception (MLI) and the access to the processed environment 

using reasonably clear and simple programming constructs. 

• Optionally, the ability to change the implementation of a given aspect during run 

time. 

A possible solution, providing necessary modularization and flexibility, would be 

a usage of dynamic object roles in combination with an active rule mechanism, to 

encapsulate particular concerns (or aspects). Defining a rule within a role would allow 

to run an appropriate routine (after the interception of expected event), in the 

environment of the processed object. Moreover, with presence of introspective 

capabilities, the code would be generic that is, able to support the instances of a number 

of different classes. 
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However, it is necessary to note, that this would be a rather fine-grained 

mechanism, since roles need to be attached to particular instances and by their nature, 

are not shared. Thus it may be perceived to be redundant in case when particular 

requirement concerns all instances of a given class. This could suggest the need for a 

kind of class-scoped roles (analogous to static attributes and methods in object-oriented 

programming languages) or (a conceptually cleaner solution) – connecting a “concern-

defining” role to a class rather than to an instance. However this would make a subject 

instance state not available directly, and necessary additional language elements and 

concepts would obscure the original idea. 

4.7 Metamodel extensibility mechanisms 

As already suggested, the extensibility of a database metamodel is important 

especially concerning future changes to the standard definition and for easy integration 

of vendor-specific features. Possible extensions made by DBMS users seem to be very 

limited and may concern rather some static extensions to incorporate custom metadata. 

When considering database metamodel extension features, it is worth to 

investigate analogous solutions provided by the UML standard. Although the 

applications of these two metamodel definitions are fundamentally different, some 

conceptual similarities remain. One of them is the lack of operations used in a 

metamodel definition. 

As mentioned in its overview, the UML metamodel provides three kinds of 

supporting features that can be used to extend the metamodel: constraints, tagged values 

and stereotypes (see p. 15). 

Treating those features as a kind of checklist for a database metamodel, firstly it is 

necessary to mention the constraints. Indeed, the metamodel should be supported by 

means of formulating additional specific constraints over database objects. A query 

language seems to be very well suited for formulating such constraints. As already 

stated, a number of analogous constraints need to be implemented within a DBMS to 

maintain the consistency of the postulated flattened metadata structure. 

Different roles the database metadata needs to fulfill, result in potentially 

numerous extensions augmenting the schema with additional metadata. For this kind of 
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metamodel modifications, dynamic object roles can be useful, as they constitute a 

powerful mechanism that could easily realize the features of tagged values and 

stereotype. 
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5 Implementation 

The prototype implementation of metadata repository presented here realizes the 

postulate of flattening the metamodel and is intended to prove its advantages in terms of 

simplicity and extensibility. Another issue investigated within this prototype is the 

DBMS schema support for the SCM through the tracking of database dependencies. 

The implementation is of limited scope in a sense that it is not a part of a complete 

DBMS prototype. The most important consequence is that the postulate of using generic 

operations of a query language to access the metadata is not realized here.22 

It was developed using pure Java language plus Objectivity/DB ODBMS as a 

persistence mechanism. To realize run-time software dependency recording, the AspectJ 

language extension [2] has been used. 

The implementation consists of two main areas. The first is a generic GUI-based 

metadata repository. The repository is based on the proposed flat metadata structure. It 

allows for definition of arbitrary metamodel in terms of allowed combinations of 

metaobject kinds, meta-relationships and meta-attributes describing metaobjects of 

particular type. This task is realized using an application named “Metamodel Manager”. 

After defining such a metamodel it is possible use another application – “Model 

Manager” – to create model, which is stored within the flattened structure and respects 

the constraints introduced by the metamodel. 

The second area provides an example of flattened metamodel, applying the 

approach to the subset of Objectivity/DB schema structure. In this case metamodel is 

determined and model is extracted from specified, populated Objectivity database. Thus 

the GUI-based functionality is limited to a metadata viewer. Moreover, the 

Objectivity/DB metamodel has been extended to store the software dependency 

information, which in current implementation can be extracted automatically during 

application runtime (e.g. in application testing phase). 

                                                 
22 Unfortunately, this fact makes the benefits of flattening the metamodel less significant. As will be 
shown the flat metamodel is value-oriented, which makes it less convenient to handle within the chosen 
implementation environment (ODBMS using Java binding). The tasks like object lookup based on values 
of its properties or checking the conditions requiring navigational access would be much easier to perform 
using a query language. 
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Implementation description presented here is structured as follows. Two parts 

distinguished above are presented separately. Each part starts with a summary of 

externally available functionality and a description of its user interface (if applicable). 

Later, the high-level description of implemented classes and their functionality is 

provided. 

5.1 Flattened metamodel – conceptual view 

The suggested structure of flattened metamodel has already been presented in the 

previous chapter. The diagram presented there has been included (with subtle change) in 

this section (Fig. 20) to describe the starting point of this implementation. 
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 name : string*
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Fig. 20. Conceptual view of the flattened metamodel assumed during implementation 

The only change introduced into this diagram is the usage of association class 

(see [41]) to denote meta-value. This notation indicates that the implementation does 

not support multivalued meta-attributes. Database design will provide the names of 

introduced metaobject. In contrast, the possible values of remaining attributes shown 

here (together with constraints on their combinations) come from a specific metamodel 

definition. Since the former activity depends on the latter, the “Metamodel Manager” 

functionality will be described first. 
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5.2 Metamodel manager 

This application allows to define metamodel-specific properties that are not 

contained within the flat structure. This information supports the modeler’s work by in 

the following ways: 

• New metaobjects are given (at creation time) a set of properties (slots for the meta-

attributes’ values) according to meta-attributes the metamodel designer defined to 

describe the metaobject kind chosen. 

• It is possible to select the kind of created metaobject only from the list of kinds 

defined in metamodel. The same holds for names of meta-relationships. 

• Moreover, one can create only meta-relationships, whose origin and target 

metaobjects kinds have been allowed for a given meta-relationship.23 Like previous, 

this constraint is supported by GUI, whose lists and combo-boxes used during 

metaobject edition show only elements that respect the defined constraints. 

• Fore more specific constraints it is possible to designate a class with special 

interface, whose validate(MetaObject) method would check constraints specific to a 

given metaobject kind (e.g. checking the rule that meta-attribute isAbstract of 

metaobject Class24 must have either a value “true” or “false” and that in the latter 

case none of metaobjects Operation connected to it may have the isAbstract 

attribute value set to “true”) or to a given meta-relationship name (e.g. that the 

specializes meta-relationships do not create loops). 

Thus, because with an empty metamodel definition, the following mechanism 

would prevent from creating any metaobject, the Metamodel Manager is the first step in 

the usage scenario of this software. 

User interface and functionality of Metamodel Manager 

Since the whole metamodel implementation presented here uses Objectivity/DB 

as a persistence layer, a federated database of that DBMS must be created first. The 

application requires to specify the path to a federated database before any other 

                                                 
23 E.g. metamodel definition may define that the generalizes meta-relationship can connect meta-object of 
kind Class with metaobject of kind Class or metaobject of kind Interface with metaobject of kind 
Interface. 
24 That is, metaobject, whose kind equals ”Class”. 
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function can be invoked. Within the chosen federated database a database named 

SchemaDB is opened and created and within it the container MetamodelCont is 

accessed in an analogous way. If some elements of metamodel have previously been 

defined, they are read from the database, and the user interface elements are populated 

with them (Fig. 21). 

 

Fig. 21. Metamodel Manager window – the “Metaobject kinds” tag 

The application window consists of three tags. The first of them, called 

“Metaobject kinds” provides the following functionality: 

• Creation of a new metaobject kind or removal of an existing metaobject kind (the 

latter is possible if a given kind has no instances). 

• Creation of a new metaobject kind as a specialization of already defined kind. New 

metaobject kind is given all the properties (that is – assigned meta-attributes) that 

the chosen (prototype) kind possess. New allowed combinations25 of meta-object 

kinds connected by meta-relationships are created, to let the new kind appear in all 
                                                 
25 More precisely, it is a combination of meta-relationship name with an ordered pair of metaobject kind 
names. For brevity however, the less precise term “metaobject kind combination” will be used for the rest 
of this work. 
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meta-relationships that accept the prototype kind at the given end. For simplicity, 

the original kind is a prototype rather than generalization, since after the specializing 

kind is created, both kinds can be modified independently. In other words the 

generalization link is not maintained between two such kind definitions. 

• Assignment of previously defined meta-attribute as a property describing the 

selected metaobject kind or removal of such meta-attribute from the list of 

properties of a given metaobject kind. 

• Assignment of a validator class dedicated for checking specific constraints 

connected with a given metaobject kind. This is realized by providing a package 

name-qualified name of a Java class. Application checks if a class of the name 

provided is available and if it implements the MetaObjectValidationMethod 

interface. 

 

Fig. 22. Metamodel Manager window – the “Meta-attribute” tag 

The next tab titled “Meta-attributes” (Fig. 22) allows for adding and removing 

meta-attributes. A meta-attribute cannot be removed if it is currently used as a property 
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of one of more metaobject kinds. To check this, a manually invoked functionality lists 

the metaobject kinds a selected meta-attribute is used by. It is thus the reverse side of 

relationship between metamodel kind and meta-attribute used in the previous tab and it 

is added here for convenience. Instead of browsing all metaobject kinds in the first tab, 

one can quickly locate usage of selected meta-attribute and to remove it from the list of 

properties of referenced metaobject kinds. 

 

Fig. 23. Metamodel Manager window – “Meta-relationships” tag 

The last tag, called “Meta-relationships” (Fig. 23), is provided to manage the 

meta-relationship descriptions. It offers the following functionality: 

• Addition / removal of meta-relationship name.26 The latter will not be allowed if 

meta-relationships of a given name exist in the model. 

• Addition / removal of metaobject kind source<->target pairs allowed for selected 

meta-relationship name. 

                                                 
26 In fact this could be called kind, since a meta-relationship’s name is of the same nature as a kind of 
metaobject. 
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Fig. 24. Reverse relationship name-choice dialog 

• Pairing mutually reverse meta-relationship names (see Fig. 24; both meta-

relationships names have to be defined earlier). In contrast to the specializing 

metaobject kind, which is creation time-only shortcut, the information on reverse 

meta-relationship names is kept and the allowed metaobject kind combinations for 

both of them are maintained accordingly to this paring. 

• Setting validator class dedicated to a given meta-relationship name (analogously 

like in case of metaobject validator class. In this case the selected class has to 

implement the MetaRelationshipValidationMethod interface). 

Probably it would be also useful to introduce one more tag that would show the 

allowed meta-relationship in a metaobject kind-centric way, thus showing the names of 

meta-relationship applicable to selected metaobject kind. 

Implementation classes of Metamodel Manager 

The user interface layer has been separated from the rest of the project. This is 

reflected in the fact that all GUI-related classes are located in a separate package called 

ui.metamodel. Since they represent a conventional usage of standard Java GUI library, 

their description is limited to the screenshots and associated summary located in the 

“user functionality” subsections of this chapter. The rest of the classes constituting the 

application are located in metadataRep.metamodelManager package. 

The central non-UI class of Metamodel Manager is MetamodelDictionary. It is 

responsible for establishing and closing connection with selected federated database as 

well as for handling any requests concerning querying or modifying metamodel 
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definition. For cooperating with Model Manager, the interface MetamodelAdvisor of 

MetamodelDictionary is used. The functionality of this interface is narrowed to read-

only operations that are used to provide hints and validity checks during model edition 

(as described in the next section). It supports the following operations: 

• Getting an array of defined metaobject kinds; 

• Getting an array of metaobject kind pairs, describing the combinations allowed for 

selected meta relationship name (provided as a method parameter); 

• Getting an array of meta-relationship names that accept the selected metaobject kind 

as an origin. 

• Getting an array of metaobject kinds that are allowed as a target of meta-relationship 

of the selected name, coming from a meta-object of the selected kind; 

• Refreshing the pool of defined metaobject validator and meta-relationship validator 

classes; 

• Providing the database session object to allow Model Manager to access database 

after successful initialization. 

Moreover, MetamodelAdvisor inherits from two other interfaces: 

MetaObjectValidator and MetaRelationshipValidator. Thus every validation request 

from metaobject or meta-relationship comes to MetamodelDictionary and is dispatched 

there: the kind of requesting metaobject or the name of requesting meta-relationship is 

checked, and validation method of the class assigned as its validator is invoked. If a 

given metaobject kind or meta-relationship has no validator, the result of validation is 

assumed to be successful and appropriate value is returned to the caller. 

The rest of functionality, available only if explicitly referring 

MetamodelDictionary, consists of the following operations: 

• Creating/removing meta-attribute names; 

• Creating/removing metaobject kind definitions; 

• Creating/removing meta-relationship definitions; 

• Assigning/canceling selected meta-attribute as a property of selected metaobject 

kind; 



www.manaraa.com

– 99 – 

• Getting an array of the names of meta-attributes being the properties of selected 

metaobject kind; 

• Allowing/denying a selected pair of metaobject kind to be connected by selected 

meta-relationship; checking if a given combination is allowed; 

• Cloning metaobject kind definition as a specialization of an existing one; 

• Getting/setting the names of metaobject- and meta-relationship validation classes; 

• Checking if a given metaobject kind is defined within metamodel; 

• Checking if a given meta-relationship name is defined within metamodel; 

• Checking if a meta-attribute of a given name is defined; 

• Getting an array of names of metaobject kind using a meta-attribute of selected 

name; 

• Paring mutually reverse meta-relationship names; 

• Assigning a name of validator class for selected metaobject kind; 

• Assigning a name of validator class for selected meta-relationship name. 

-attributes : String[*]
-moValidationClassName : String

MetaObjectKindDescription

-mrValidationClassName : String

MetaRelationshipDescription

MoKindCombination

1

-allowedCombinations*

-target

1

*

-source1

*

MetamodelDictionary

-metaRelDesc0..1

metaRelName : String

 

Fig. 25. Metamodel-defining classes for the implementation of the flattened metamodel 
(UML diagram) 
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Fig. 25 shows the class structure used to store data necessary for the above 

functionality. Although it is very simple, significant complexity of specific well-

formedness rules may be hidden within the validating code. However, this problem may 

be effectively reduced in presence of a full-featured query language to manipulate 

metadata, as it would allow for a clear, declarative formulation of those constraints. 

5.3 Model Manager 

Having defined a metamodel makes it possible to use another application – Model 

Manager, to create model that would be stored within the flattened metamodel structure 

described at the beginning of this chapter. The application realizes the following 

functionality: 

• Browsing/creating/removing the instances of the selected metaobject kind; 

• Performing validation of selected metaobject, meta-relationship or the whole model; 

• Browsing the validation report and navigation to the elements where inconsistencies 

were found; 

• Updating the values of meta-attributes of selected metaobject; 

• Creating or removing meta-relationships originating at selected object; 

• Navigation along meta-relationships to other meta-objects. 

User interface and functionality of Model Manager 

To access model, one needs, like in case of Metamodel Manager, to specify the 

federated database to work with. Since the metadata-updating features of Model 

Manager require access to the read-only functionality of Metamodel Manager (through 

the abovementioned MetamodelAdvisor interface), the latter is also prepared during this 

initialization. 
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Fig. 26. Model Manager window – the “Properties” tag 

The central concept of this application is metaobject, thus all features (despite the 

whole model validation command) depend on the current selection of metaobject. The 

metaobjects are grouped according to their kind: selecting a kind name from the 

“Choose kind” combo list (see Fig. 26) results in showing all instances of that kind. 

Without selecting particular meta-object from the “Instances” table, it is possible to 

perform the following: 

• Creation of a new meta-object of the kind determined by the current selection in the 

“Choose kind” combo; 

• Validation of the whole model (that is, all metaobjects and all meta-relationships); 

• Browsing the report from the above action. 

Selecting a particular metaobject allows to: 

• Perform an individual validation; 

• Remove metaobject; 
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• Update metaobject’s properties (that is – values of meta-attributes applicable to this 

kind of a metaobject – see Fig. 26). 

 

Fig. 27: Model Manager window – the “Owned meta-relationships” tag 

Moreover, the 2-nd and 3-rd tag (“Owned meta-relationships” and “Dependent 

meta-relationships”) allow to edit meta-relationships that are connected to the selected 

metaobject as appropriately its origin or its target (see Fig. 27 and Fig. 28). 

Selecting particular owned meta-relationship allows to:  

• Remove that meta-relationship; 

• Validate it; 

• Or to navigate to the target metaobject of this meta-relationship. 

For convenience, the first and third of above options are available also in the 

“backward” direction (see Fig. 28), that is for the meta-relationships for which the 

selected meta-object is a target rather than an owner. 
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Fig. 28. Model Manager window – the “Dependent meta-relationships” tag 

 

Fig. 29. Model Manager– the “Establish new meta-relationships” dialog 
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The “Owned meta-relationships” tag allows also for creating new meta-

relationships. Thanks to the access to metamodel definition, the dialog dedicated to this 

option limits the possible selection to allowed combinations of metaobject kinds (Fig. 

29). At the first stage it requires to select the meta-relationship name from among of 

meta-relationships the selected metaobject can own. Then, the “Choose target” list is 

being filled only with metaobjects, whose kinds are allowed as targets for the selected 

[owner-kind <–> meta-relationship name] combination. 

Implementation classes of Model Manager 

The implementation of Model Manager is based on the flattened metamodel 

structure, whose conceptual design was presented at the beginning of this chapter. Since 

it was assumed that both the meta-attribute and the meta-value are represented by just a 

single name, this structure was further reduced to only two project-specific classes: 

MetaObject and MetaRelationship. Fig. 30 shows practically complete interface of 

those classes, as well as their private attributes. Taking into account that majority of 

those methods are trivial and are included just to realize encapsulation, the structure 

may be classified as being very simple. In addition to those two classes the package 

metadataRep.metamodel also defined two interfaces: MetaObjectValidator and 

MetaRelationshipValidator used to connect metadata with validator classes defined by a 

metamodel designer. 

The properties of metaobject are stored within a map (dictionary) structure, where 

the meta-attribute names are stored as keys and the strings representing meta-values 

form the value entries. The references to MetaObjectValidator and 

MetaRelationshipValidator are of class scope and in the current implementation lead to 

single MetamodelDictionary object. The responsibilities of MetaObjectValidator are the 

following: 

• Validating the provided metaobject; 

• Checking if a metaobject kind of the name provided exists; 

• Providing a list of meta-attributes assigned to selected metaobject kind. 

To realize the first of abovementioned tasks it is necessary for the validator to: 

1. Check the kind of the provided metaobject. 
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2. Lookup the appropriate metaobject kind description. 

3. Locate an object of class, which was designated as a validation code for that 
metaobject kind. 

4. Forward the validate(MetaObject) message to that object. 

Taking into account that the metaobject kind check and dispatching of the validate 

method are encapsulated within the MetamodelDictionary class, the validation 

invocation scenario is quite simple, as shown in Fig. 31. 

+MetaObject(in n : String, in k : String, in v : MetaObjectValidator)
+allProperties() : [] []String
+getAllOwnedLinks() : []MetaRelationship
+getAllOwnedLinksOfType(in name : String) : []MetaRelationship
+getAllReverseLinks() : []MetaRelationship
+getKind() : String
+getName() : String
+getProperty(in attr : String) : String
+hasDefined(in attr : String) : boolean
+setUpProperties()
+setValidator(in v : MetaObjectValidator)
+isValidated() : boolean
+validate() : MetamodelErrorDescription
+updateProperty(in attr : String, in val : String)
+addRelationship(in mr : MetaRelationship)
+removeRelationship(in mr : MetaRelationship)

-name : String
-kind : String
-validated : boolean

MetaObject

String

-metaValue

0..1

metaAttr : String

+createMetaRelationship(in name : String, in from : MetaObject, in to : MetaObject) : MetaRelationship
+direct(in mo : MetaObject)
+getName() : String
+getSource() : MetaObject
+getTarget() : MetaObject
+remove()
+setValidator(in v : MetaRelationshipValidator)
+isValidated() : boolean
+validate() : MetamodelErrorDescription

-leftName : String
-rightName : String
-leftValidator : MetaRelationshipValidator
-rightValidator : MetaRelationshipValidator
-direction : int = 0

MetaRelationship

2

-ownedRelationships*

-right1

**

-left 1

MetaObject
Validator

MetaRelationship
Validator

{ordered}

 

Fig. 30. The implementation of the flattened metamodel 
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The functionality of MetaRelationshipValidator is similar and consists of the 

following functions: 

• Checking if a meta-relationship of the selected name is defined within metamodel; 

• Validating the provided meta-relationship; 

• Getting the name of relationship reverse to the one provided; 

• Checking if the provided combination of meta-relationship name and a pair of 

metaobject kind names is allowed to instantiate. 

Dispatch
encapsulated within
MetadataDictionary

tested:M etaObject

u:User

dict:M etamodelDictionary validator:M etaObjectValidationM ethodkindDesc:M etaObjectKindDescript ion

validate()

M etamodelErrorDescription

validate(this)

M etamodelErrorDescript ion

getKind()

kind
lookupKindDesc(kind)

kindDesc
validate(tested)

M etamodelErrorDescription

validate(tested)

M etamodelErrorDescript ion

 

Fig. 31. Invoking metaobject validation – a UML sequence diagram 

As already mentioned, the dependencies between model and metamodel have to 

be bidirectional, and this remark seem to be of more general nature than just an 

implementational assumption made here. The diagram summarizing the dependencies 

of core concepts of this metamodel implementation is shown in Fig. 32. Note that the 

metamodel package is independent on any other package. 
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MetaObjec
t Validator

MetaRelationshi
p Validator

Metamode
l Advisor

MetamodelDictionary

ModelManager
ModelAdviso

r

MetaRelationshi
p

MetaObject

metamodel package metamodelManager
package

 

Fig. 32. Class diagram showing dependencies among core elements of the implemented 
metamodel 

5.4 Database Analyzer 

This part of implementation is a command-line application, designed to extract a 

schema of Objectivity/DB ODBMS into the flat metamodel structure. Since Java 

programmer’s interface of this DBMS does not provide a direct access to its schema 

repository, the reflective capabilities of Java language were used to extract the metadata. 

The main drawback of this solution is that the persistence-capable class that is 

registered in the schema needs either to have at least one instance within the database or 

to be referenced by other persistence-capable class that has at least one instance. 

Otherwise such class would not be found by Database Analyzer. Taking into account 

the typical Objectivity for Java usage scenario (see chapter 2), this limitation does not 

seem to be severe. 

With presence of the metamodel and model implementations described above 

with programming interface to access them, the realization of Database Analyzer is 

quite obvious and thus it will not be described here. Note also that since the metamodel 

is in this case fully determined by the Objectivity/DB architecture and Java object 

model, there will be no need to edit the metamodel definition stored within 

MetamodelDictionary (appropriate definitions are hard-coded in the initializing part of 

Database Analyzer). Similarly, the need to define metaobject and meta-relationship 
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validators would be significantly reduced, since the metadata being extracted comes 

from compiled Java classes.27 

Despite those facts the application is interesting, because of realizing a reasonably 

complete metamodel using the postulated flattened metadata structure. Moreover, the 

below description of Objectivity for Java metamodel shows, how the presented 

approach can address the contradictory requirements of expressiveness (desired for its 

descriptive role) and simplicity (implementational requirements). This is thanks to the 

fact that the expressive UML style of metamodel definition can be mapped into the 

flattened form in a very straightforward way, as described in the previous chapter.  

name
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Fig. 33. Conceptual view of a simplified Objectivity for Java metamodel 

                                                 
27 However, such checking elements can still be useful to enforce some more subtle properties of the 
design style. 
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The structure presented in Fig. 33 does not address all properties the selected 

DBMS supports. The following metadata kinds are considered in that simplified 

metamodel: 

• All types used in definition of database classes (referred here as Persistence-

Capable Classes – PCC), including built-in primitive types (in their Java binding 

name), arrays of different types (including multidimensional arrays) and finally 

PCCs (both predefined, like e.g. persistent collections, and application-defined 

ones). 

• All attributes of each PCC, including transient ones. 

• All bi-directional relationships between PCCs (more sophisticated, integrity-

assuring substitute for plain object-referencing attributes). 

• All operations defined for each PCC. 

• All databases contained in the analyzed federated database and containers they 

consist of. 

• Database root variables declaration: their names and references to PCCs they are 

instances of (both global roots – of federation scope, and local – defined for 

particular database). 

The presented elements are the most important ones and all of them can be 

extracted using a combination of API operations provided in Java binding and (mainly) 

– the Java’s reflection mechanism. 

As already mentioned, the described module was necessary due to the fact that the 

Objectivity/DB schema is manipulated only internally by the DBMS. That is – metadata 

is not available to a programmer in a way analogous to regular data stored within 

database.28 Taking into account various responsibilities of database metadata discussed 

in this work and especially the usefulness of custom or vendor-specific extensions to a 

metadata contents, such solution can be considered as a drawback. Despite positive 

aspects (e.g. simpler programmer’s interface and easily achieved protection of schema 

against illegal updates), this can be considered as a factor limiting the DBMS 

                                                 
28 Other options for extracting Objectivity schema contents were parsing “schema dump” in a form of a 
regular text file or resorting to the Active Schema feature available as an extension of the C++ binding 
[32]. 
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functionality. Therefore, the most general postulate of this work should state that 

database metadata should be an extensible structure, directly available to programmer 

through the means analogous to those supporting regular data. 

5.5 Dependency Discoverer 

Having access to metadata structure (in our case the metadata extracted by 

Database Analyzer will be used), it is possible to extend it towards addressing of 

various additional features. As stated in the previous chapter, one of such tasks is the 

support for software configuration management in the area of database schema 

evolution, and this feature was implemented as an example of database metadata 

extension. 

Metamodel extensions 

According to the postulates from the previous chapter, the aim of this 

implementation is to collect information on broadly understood backward dependencies 

on database schema. This means the need to identify all procedural units accessing 

database together with specification of the kind of this access. Particular kinds of 

database access worth distinguishing are specific to a given data model, technology or 

even product. In case of Objectivity/DB Java binding, the following dependency kinds 

were identified: 

• Operation call dependency (concerns calls of operations of PCCs from within any 

other methods). 

• Side-effect dependencies (direct access to database objects’ attributes). The read-

only (RO) and read-write (RW) access kinds are distinguished. 

• Root-lookup dependencies (method’s attempt to bind a particular name of a root 

variable). 

• Local (that is container- or database-scope) scans for database objects of particular 

class. This is a way of acquiring object references alternative to using root 

variables.29 

                                                 
29 This operation accepts only a class name as a scan criterion. Another version of the scan(..) operation 
allows to specify simple predicates (in a form of string) to narrow the selection based on attribute values. 



www.manaraa.com

– 111 – 

PersistCapable_Class

name
persistent

Attribute

primitName

PrimitiveType Array

Type

paramOf

*

contents

1

multiplicity

Relationship

reverse1

*

target1

*

owner

1

association*

attribute

*

staticOwner

0..1

instance*

type

1
PCCs_Operation parametricUsage

*

parameterType

*

name
ID

Database

name [0..1]
ID

Container

name

Root

1

*

namedRoot

*

location

0..1

operation

*

operOwner

1

rootInstance*

class1

specialization *

generalization

0..1
name

Operation

name

Class

 

Fig. 34. Objectivity for Java metamodel prepared for defining external dependencies on DB 
schema 

To support abovementioned information, the first step was a modification of a 

metamodel from Fig. 33 to incorporate elements identifying non-persistent application 

classes, together with those of their methods that access elements of database schema. 

Thus the appropriate metamodel concepts (that is, Persistence-Capable Class (PCC) 

and PCCs Operation) were generalized to cover external application elements (that is, 

Class and Operation) – see Fig. 34. 

With these minor adjustment made, the support for schema dependency 

information requires only few additional associations (see Fig. 35): 

                                                                                                                                               
Assuming that such selection could be the only case of usage of a given PCC’s attribute by an external 
method, it seems valuable to consider extracting also the parameter names used in predicate. 
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• Read-only and read-write dependencies between operations and non-local attributes; 

• Call dependency between operation and PCCs operation. 

• Lookup dependency between operation and root variable. 

• Scan dependency between operation and a storage object (database or container), 

concerning instances of particular class. This is conceptually a tertiary association, 

decomposed for implementation into a class (Scan) and three binary associations. 
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Fig. 35. Dependency-tracking elements of the Objectivity for Java metamodel 

Collecting the dependency information 

From among of possible ways of collecting the information on database 

dependencies, a variant of solution sketched in the previous chapter has been applied. 

That is, dependencies are detected and recorded during application testing and reflective 

capabilities are used to identify the caller. Due to architecture of Objectivity/DB, the 

mechanism registering dependencies is not a DBMS extension. Instead, it is (rather 

loosely) connected with applications’ code, using aspect-oriented programming (AOP) 

Java extension (AspectJ [2]).  
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The problem was divided into two tasks: monitoring of currently executing 

methods and detecting any non local (that is – coming from another class) calls to 

database objects. The simplest solution of the former task, used in this implementation, 

is following: 

• Defining pointcuts to intercept the start and the end of method’s execution. 

• Implementation of a stack of method description objects. 

• Reflective extraction of method’s signature at the moment of its invocation and 

pushing that data on the stack. 

• Popping the method’s description at the moment when its execution terminates. 

This solution allowed to illustrate the idea using simple exemplary applications. 

However, it is not universal, taking into account a multiple-threaded execution model.30 

Nevertheless, these limitations can be easily removed and they do not affect the 

feasibility of presented solution in the Objectivity for Java environment. 

The second task required introducing further pointcuts: 

• Direct read / direct write of an attribute of database object. 

• Call of an operation on a database object. 

• Call of the lookup(String name) operation on a database or federation object (used to 

access a root object). 

• Call of the scan(String className, …) operation. 

Each occurrence of one of the above conditions triggers the following actions: 

• Reading the top element of the executing methods’ description stack; 

• Lookup of that description within schema;  

• If necessary – addition of the method description to the schema; 

• Creating the appropriate association between method’s description and schema 

element. 

                                                 
30 This problem can be observed even in simple application, when the toString() operation (supported by 
any Java object) is invoked by GUI mechanism during form refreshing. 
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For performance reasons and conceptual clarity it is assumed that a complete 

schema description has been extracted by Database Analyzer prior to running the 

Dependency Discoverer feature. 

5.6 Model Browser 

This application provides a subset of the Model Manager functionality to allow 

for easier browsing of existing models. Evaluating this application can be interesting as 

a test for expressiveness or just the readability of the postulated flattened metamodel 

when manipulated by programmer.31 This is because the browser preserves the inherent 

genericity of this approach, not trying to adjust the representation according to 

metaobject’s kind or meta-relationship’s name. Thus, all metaobjects are shown in a 

uniform way, as a composition of properties (metaobject – meta-value pairs and meta-

relationships owned by a given metaobject) and allow navigation along their meta-

relationships (Fig. 36). 

 

Fig. 36. Model Browser window 

                                                 
31 Only programmer or database administrator is supposed to deal directly with flattened metamodel 
structure. Thanks to straightforward mapping between rich UML-like metamodel and its flattened form 
the former can still be used for modeling and design as better suited for those tasks. 
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5.7 Implementation: encountered problems, remarks and 
conclusions 

The implementation was realized using a pure, commercially available ODBMS 

that is – in an environment closely related to the one assumed by the ODMG standard, 

which was the starting point of this research.  

The advantages of this environment are the close integration of DBMS 

functionality with programming language and the ability to directly utilize the core 

object-oriented constructs during implementation. On the other hand, the approach 

assuming the use of general-purpose programming language as a database data 

manipulation language, can be indeed considered controversial as being a relatively 

low-level solution. Despite the fact the ODMG standard defines an object query 

language OQL, its role, even within the standard definition, can be considered 

secondary. Moreover, a very limited interest of vendors in developing the OQL support 

into their products aggravates that trend. 

Lack of (powerful enough) declarative means of selecting and modifying objects, 

made the implementation of the flattened metamodel less convenient. This is because 

that metamodel structure is strongly value-oriented; that is, the treatment of each 

element depends on its state (e.g. kind = “Interface”) rather than on its type. Of course, 

this also leads to using generic means of manipulating the metadata, which is also rather 

against the ODMG metamodel philosophy. 

Another assumption of the Objectivity/DB DBMS is an extremely decentralized 

distribution model. One of assumptions connected with this approach (and represented 

by the ODMG standard as well), was moving all the processing (together with a whole 

definition of object’s behavior) onto the application side. Although this may result in a 

simpler architecture, lack of methods stored within a database may become in some 

cases very unnatural. This is because some operations serve as means to maintain 

consistency rules inherent to a given model definition rather that as an adjustable 

external interface. Consider for example situation where the same objects stored in a 

persistent collection are accessed by two applications written in different programming 

languages (e.g. Java and C++). Both applications need to provide their own code 

implementing all used operations of database objects. This is not only redundant but 

also inconsistency-prone solution. E.g. the comparator operations needed to maintain 
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order in sorted collections may corrupt data if their implementations in both 

applications are not compliant. 

Practical usage of the flattened metadata structure in Database Analyzer and 

Dependency Discoverer features proves its usability. However, it is clear that 

implementation could be realized in a more convenient way if a query language to 

manipulate metadata were available. 

The realization of the dependency-tracking mechanism shows the importance of 

the extensibility concerning both database mechanisms as well as an externally 

accessible and extensible database metadata structure. The features serving to identify 

procedural unit accessing database proved to be highly dependent on a programming 

language. Structural and behavioral reflection also became necessary. This also 

exemplifies the problems connected with multi-language direct access to an ODBMS. 
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6 Conclusions and future work 

The goal of this work was the investigation of the required features of a 

metamodel for ODBMS in the context of existing standardization efforts, particularly, 

the ODMG standard. The analysis showed a number of issues with the existing ODMG 

metamodel definition, which need to be solved, as well as some new requirements, not 

considered in the original standard at all. 

6.1 ODBMS metamodel roles and suggested solutions 

Probably the most broadly known object-oriented metamodel is the metamodel 

definition from the UML standard. This specification exemplifies the descriptive role of 

a metamodel: it is needed to properly and precisely understand the meaning of a given 

language’s or tool’s constructs, their interrelations, constraints and intended usage. 

Despite its informal and meta-circular32 style, the UML metamodel is quite 

successful in providing such description. Thus it seems to be acceptable to define the 

ODBMS metamodel in a very similar style.33 This would be sufficient especially 

considering, that in case of a DBMS the metamodel concepts are related to a storage 

model and to a query language semantics, which make them more precise. 

Another role of a DBMS metamodel is related to the fact, that it constitutes a 

foundation to implement a database schema repository, necessary for various DBMS 

operations. Such repository stores also physical data structure information, privacy and 

security information and other data that may be needed for optimization. All this 

information needs to be incorporated in a way that guarantees a good performance, 

since such metadata is expected to be accessed very frequently. Those kinds of 

metadata, that need to be explicitly used by a programmer, should be accessible through 

a simple and efficient interface. Both these requirements speak in favor of employing a 

metadata structure much simpler than the one assumed by the ODMG. 

                                                 
32 As already mentioned, the UML definition is recursive. The term “meta-circular” means that the 
language definition is provided using a specially chosen subset of its own basic elements, which is called 
the UML core. 
33 Due to the popularity of the UML and MOF standards, the subset of UML could be a good choice as 
the basic mean to describe an ODBMS metamodel proposal. 



www.manaraa.com

– 118 – 

The most obvious example of the need of making the database metadata 

externally available is the generic programming through reflection, which proved to be 

a very useful technique. The comparison with specifications of CORBA Interface 

Repository or Dynamic SQL [9] shows, that the current ODMG standard lacks some 

elements necessary to guarantee true portability of generic database applications. 

Moreover, there are various requirements indicating the need of further extensions 

to the metamodel. One important source of such changes would be future additions of 

new conceptual modeling notions. An example would be the dynamic object role 

concept, whose influence on the considered database metamodel has been discussed 

here. Other, even more certain source of the future metamodel extensions would be the 

incorporation of important DBMS features, not considered in the current ODMG 

proposal. As suggested e.g. in [46], the most necessary subject of standardization would 

be a view mechanism and stored behavior (in the form of database procedures or 

perhaps also a kind of active rule mechanism). 

Apart from abovementioned conventional database responsibilities, new 

metadata-related features should be considered. One example is support for SCM, 

assuming storage of database-related software dependencies within the schema 

repository. The integration and interoperability of independently developed systems 

requires much more meta-information that the data structure description stored 

traditionally in the schema. Thus, another important feature would be RDF-style 

descriptions to express database’s ontology. 

As can be seen from the above summary, the database metamodel has to deal with 

a very large number of various kinds of metadata, being at the same time well prepared 

for efficient implementation in a form of a schema repository, as well as for future 

evolution and custom extensions. For those reasons, a radically simplified (“flattened”) 

metamodel to use for the implementation and manipulation of a schema repository has 

been proposed. This “lightweight” solution provides the level of flexibility and 

extensibility comparable with the traditional four-level metalevel architecture. On the 

other hand, to support expressiveness, the conceptual view of the proposed metamodel 

has been described in the UML style, and the simple rules of mapping it to the flattened 

form were provided. 
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Since the flattened metamodel structure differs significantly from the existing 

proposals in this area, the prototype implementation of a schema repository based on it 

has been realized. Although less expressive when directly drawn as a UML diagram, the 

flattened structure proved to be convenient for metadata manipulation. To provide a 

practical example, the flattened metamodel has been used to express the Objectivity/DB 

ODBMS schema elements. This served to provide a working illustration of another idea 

presented in this work that is, extending the DBMS schema to support the SCM through 

storing software dependency information. 

6.2 Future work 

Although this work attempts to provide a complete overview of the roles an 

ODBMS metamodel has to fulfill, many of suggested improvements and solutions 

require further research in order to provide a more specific proposal. The most 

important areas requiring a detailed solution include: 

• The view mechanism, allowing, as far as possible, to treat the virtual objects as if 

they was regular objects. Thus the view definition need to be described as a fully-

fledged sub-schema, including virtual objects’ classes, their properties etc. 

• Behavioral elements, including stored database procedures and active rules. 

• Security mechanisms, standardized as a DBMS feature rather than some 

externally-defined facility. 

• Database distribution and interoperability, which requires to explicitly deal with 

e.g. the site concept within a metamodel, in order to unambiguously identify and 

partition schema definitions and data sources. 

The realization of postulated new features of database metamodel requires further 

investigation, e.g. in order to answer the following questions: 

• What level of customizability and support for the separation of concerns principle 

needs to be provided to a database designer? 

• How to standardize the vocabulary for the DB schema-based resource description 

system? To what extent it can be based on or unified with the RDF specification? 
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• What is the optimum way to collect the software dependency information 

concerning database, in order to store it within the schema? 

Any proposal concerning database metamodel should respect as far as possible the 

established standards, their notions and existing vocabulary. Thus it was assumed here 

that the conceptual view of proposed metamodel features should be described using 

UML/MOF and their mapping into the flattened form (used for schema implementation 

and metadata manipulation) should be provided. The same style of description is 

intended to be used for future more detailed solutions of above outlined problems. 

Although the metadata repository implemented and described in this work 

allowed to test some of the presented ideas, many details discussed here can be 

investigated only in presence of a fully-fledged ODBMS prototype. This concerns e.g. 

using a query language for metadata manipulation. Assuming the flattened metamodel, 

this seems to be very promising for simplifying a database metadata management, 

which is the main goal of this research. 

On the other hand, the proposed flattened metamodel can be, thanks to its inherent 

flexibility, very well prepared for experimenting with different detailed solutions during 

the development of a prototype ODBMS. 
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8 Appendices 

A. Abbreviations 

AOP  Aspect-Oriented Programming 
CORBA  Common Object-Request Broker Architecture 
CVS  Concurrent Versioning System 
CWM   Common Warehouse Metamodel 
DC  Dublin Core [Metadata Element Set] 
DII  Dynamic Invocation Interface 
DBMS  Database Management System 
DOI  Digital Object Identifier 
DSI  Dynamic Skeleton Interface 
DTD  Document Type Definition 
EJB  Enterprise Java Bean 
GUI  Graphical User Interface 
IDL  Interface Definition Language 
IIOP  Internet Inter-ORB Protocol 
IR   Interface Repository 
MDA  Model Driven Architecture 
MLI  Meta Level Interception 
MOF  Meta Object Facility 
OASIS  ODMG Architectures for the Specification of Interoperable Systems 
OCL  Object Constraint Language 
ODBMS Object-Oriented Database Management System 
ODL  Object Definition Language 
ODMG Object Data Management Group 
OLAP  On-Line Analytical Processing 
OMG  Object Management Group 
OMT  Object Modeling Technique 
OOSE  Object-Oriented Software Engineering 
OQL  Object Query Language 
PCC  Persistence-Capable Class 
SCI  Software Configuration Item 
SCM  Software Configuration Management 
UI   User Interface 
UML  Unified Modeling Language 
URI  Uniform Resource Identifier 
URL  Uniform Resource Locator 
XMI  XML Metadata Interchange 
XML  eXtensible Markup Language 
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B. Objectivity for Java simplified metamodel elements 

This appendix presents the complete set of metaobject kinds and meta-relationship 

names used to express the necessary elements of the Objectivity/DB metamodel (as 

expressed in Fig. 34 and Fig. 35) in the flattened form. Since the well-formedness of the 

extracted schema is guaranteed by the mechanisms of the Objectivity/DB DBMS, there 

was no need to implement the appropriate constraints to verify it. The presented data is 

included within the Database Analyzer code and is registered into the database before 

starting the schema analysis of the provided database. 

First the flat metamodel definition for Objectivity/DB is presented from the point 

of view of particular metaobject kinds. An asterix (*) preceding a meta-relationship 

name or a metaobject kind indicates, it is an extension introduced to store the 

dependency information rather than a part of the original Objectivity/DB schema. The 

further part of this appendix enumerates the defined meta-relationship names together 

with metaobject kind combinations allowed to be connected by them. 

External Operation 
Kind *External Operation 
Meta-attributes - 
Owned meta-relationships 
kinds 

Call Dependency -> PCs Operation 
Operation Owner -> *External Class 
To Parameter -> Parameter 
Return Type -> PC Class 
Return Type -> External Class 
Return Type -> Array 
Return Type -> Primitive Type 
*RO Dependency -> Attribute 
*RW Dependency -> Attribute 
*Scan Dependency -> Scan 
*Lookup Dependency -> Root 
*Call Dependency -> PCs Operation 

Constraints Exactly one Operation Owner 
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PCCs Operation 
Kind PCCs Operation 
Meta-attributes - 
Owned meta-relationships 
kinds 

Call Dependency -> PCCs Operation 
Operation Owner -> PC Class 
To Parameter -> Parameter 
Return Type -> PC Class 
Return Type -> *External Class 
Return Type -> Array 
Return Type -> Primitive Type 
*Caller Operation -> *External Operation 
*Caller Operation -> PCCs Operation 
*RO Dependency -> Attribute 
*RW Dependency -> Attribute 
*Scan Dependency -> Scan 
*Lookup Dependency -> Root 
*Call Dependency -> PCs Operation 

Constraints Exactly one Operation Owner 

External Class 
Kind *External Class 
Meta-attributes - 
Owned meta-relationships 
kinds 

Dynamic Property -> *External Operation 
Instance -> Parameter 
Instance -> Attribute 

Constraints - 

PC Class 
Kind PC Class 
Meta-attributes - 
Owned meta-relationships 
kinds 

Dynamic Property -> PCCs Operation 
Owned Relationship -> Relationship 
To Attribute -> Attribute 
Entry Point -> Root 
Instance -> Attribute 
Instance -> Parameter 
Superclass -> PC Class 
Subclass -> PC Class 
*Scanning Case -> Scan 

Constraints - 
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Scan 
Kind *Scan 
Meta-attributes Formula 
Owned meta-relationships 
kinds 

*Scan Location -> Database 
*Scan Location -> Container 
*Scan Subject -> PC Class 
*Scan Dependent Operation -> External Operation 
*Scan Dependent Operation -> PCs Operation 

Constraints - 

Attribute 
Kind Attribute 
Meta-attributes - 
Owned meta-relationships 
kinds 

Type -> PC Class 
Type -> Primitive Type 
Type -> Array 
Type -> *External Class 
Attribute Owner -> PC Class 
*RO Dependent Operation -> External Operation 
*RO Dependent Operation -> PCs Operation 
*RW Dependent Operation -> External Operation 
*RW Dependent Operation -> PCs Operation 

Constraints - 

Parameter 
Kind Parameter 
Meta-attributes Position 
Owned meta-relationships 
kinds 

Type -> PC Class 
Type -> *External Class 
Type -> Primitive Type 
Type -> Array 
Parameter Owner -> PCs Operation 
Parameter Owner -> *External Operation 

Constraints - 

Relationship 
Kind Relationship 
Meta-attributes Multiplicity 
Owned meta-relationships 
kinds 

Origin -> PC Class 
Target -> PC Class 
Reverse Relationship -> Relationship 

Constraints Exactly one reverse rel.: symmetrical, non recursive 
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Primitive Type 
Kind Primitive Type 
Meta-attributes - 
Owned meta-relationships 
kinds 

Instance -> Attribute 
Instance -> Parameter 
Parametrized Array -> Array 

Constraints - 

Array 
Kind Array 
Meta-attributes - 
Owned meta-relationships 
kinds 

Contents -> Primitive Type 
Contents -> Array 
Contents -> *External Class 
Contents -> PC Class 

Constraints - 

Database 
Kind Database 
Meta-attributes ID 
Owned meta-relationships 
kinds 

Component -> Container 
Maintained Root Name -> Root 
*Scanner -> *Scan 

Constraints - 

Container 
Kind Container 
Meta-attributes ID 
Owned meta-relationships 
kinds 

Composition -> Database 
*Scanner -> *Scan 

Constraints - 

Root 
Kind Root 
Meta-attributes - 
Owned meta-relationships 
kinds 

Location -> Database 
Contents Type -> PC Class 
*Lookup Dependent Operation -> *External Operation 
*Lookup Dependent Operation -> *External Operation 

Constraints Maximum one location. 
Exactly one Type (is obligatory). 
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Meta-Relationships 

Call Dependency (External Operation -> PCCs Operation) 
(PCCs Operation ->  PCCs Operation) 

+REVERSE 

Caller (PCCs Operation -> PCCs Operation) 
(PCCs Operation -> External Operation) 

Operation Owner (External Operation -> External Class) 
(PCCs Operation -> PCCs Class) 

+REVERSE  

Dynamic Property (External Class  -> External Operation) 
(PCCs Class  -> PCCs Operation) 

Owned Relationship (PC Class  -> Relationship) 

+REVERSE 

Origin (Relationship  -> PC Class) 

Target (Relationship  ->  PC Class) 

(NO REVERSE) 

Reverse Relationship (Relationship  -> Relationship) 

(NO REVERSE) 

To Attribute (PC Class  -> Attribute) 

+REVERSE 

Attribute Owner (Attribute  -> PC Class) 

To Parameter (PCs Operation  -> Parameter) 
   (External Operation)  -> Parameter) 

+REVERSE 

Parameter Owner (Parameter  -> PCs Operation) 
(Parameter  -> External Operation) 
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Type (Attribute  -> PC Class) 
(Attribute  -> Array) 
(Attribute  -> Primitive Type) 
(Attribute  -> External Class) 
(Parameter  -> PC Class) 
(Parameter  -> External Class) 
(Parameter  -> Array) 
(Parameter  -> Primitive Type) 

 +REVERSE 

Instance (PC Class  -> Attribute) 
(Array   -> Attribute) 
(Primitive type  -> Attribute) 
(External Class  -> Attribute) 
(PC Class  -> Parameter) 
(External Class  -> Parameter) 
(Array   -> Parameter) 
(Primitive type  -> Parameter) 

Return Type (External Operation -> PC Class) 
(External Operation -> Array) 
(External Operation -> Primitive Type) 
(External Operation -> External Class) 
(PCCs Operation -> External Class) 
(PCCs Operation -> PC Class) 
(PCCs Operation -> Array) 
(PCCs Operation -> Primitive Type) 

 +REVERSE 

Returning Operation (PC Class  -> External Operation) 
(External Class  -> External Operation) 
(Array   -> External Operation) 
(Primitive type  -> External Operation) 
(PC Class  -> PCCs Operation) 
(External Class  -> PCCs Operation) 
(Array   -> PCCs Operation) 
(Primitive type  -> PCCs Operation) 
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Contents (Array   -> Primitive Type) 
(Array   -> Array) 
(Array   -> External Class) 
(Array   -> PC Class) 

(+REVERSE) 

Parametrized Array (Primitive Type  -> Array) 
(Array   -> Array) 
(External Class  -> Array) 
(PC Class  -> Array)  

Composition (Container  -> Database) 

(+REVERSE) 

Component (Database  -> Container) 
 

Maintained Root Name (Database  -> Root) 
 

(+REVERSE) 

Location (Root   -> Database) 

Entry Point (PC Class  -> Root) 
 

(+REVERSE) 

Contents Type (Root   -> PC Class) 

*RO Dependency (*External Operation -> Attribute) 
(PCs Operation  -> Attribute) 

(+REVERSE) 

*RO Dependent Operation (Attribute  -> External Operation) 
(Attribute  -> PCs Operation) 

*RW Dependency (*External Operation -> Attribute) 
(PCs Operation -> Attribute) 

(+REVERSE) 

*RW Dependent Operation (Attribute  -> External Operation) 
(Attribute  -> PCs Operation) 
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*Lookup Dependency (External Operation -> Root) 
(PCs Operation -> Root) 

(+REVERSE) 

*Lookup Dependent Operation (Root   -> External Operation) 
(Root   -> PCs Operation) 

*Scan Dependency (External Operation -> Scan) 
(PCs Operation -> Scan) 

(+REVERSE) 

*Scan Dependent Operation (Scan   -> External Operation) 
(Scan   -> PCs Operation) 

*Scan Location (Scan   -> Database) 
(Scan   -> Container) 

(+REVERSE) 

*Scanner (Database  -> Scan) 
(Container  -> Scan) 
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C. Test cases for Database Analyzer and Dependency 
Discoverer applications 

This appendix describes two mini-applications that were used to test the 

functioning of dependency-tracking mechanism. The aim was to provide a minimum 

functionality needed to test the discovering of all distinguished kinds of dependencies 

concerning database. Because of prototype character of all the software created in 

connection with this work, it has not been tested very thoroughly. However, it was 

possible to observe, that all kinds of dependencies intended to be tracked, can be easily 

discovered without the need of changing original applications thanks to the use of the 

AspectJ [2] language AOP capabilities. 

+getName() : String
+getAddress() : Address
+setAddress(in cty : String, in str : String)

#name : String

Person

+getCity() : String
+setCity(in cty : String)
+getStreet() : String
+setStreet(in str : String)

#city : String
#street : String

Address

1

#persAddress

1

+getDepartment() : Department
+employ(in dept : Department)
+getSalary() : int
+setSalary(in sal : int)

#salary : int

Employee

+getEmployees() : Employee[]

#deptName : String

Department-employees

*

-workplace

1

«relationship»

 

Fig. 37. The persistence-capable classes defined for test applications “Address book” 
and “Department-Employee” (a UML class diagram) 

The persistence-capable classes defined for those applications and contained in a 

separate Java package are presented using UML class diagram in Fig. 37. They 

constitute a part of database schema information, the test applications depend on. All 

other classes, that is those providing the GUI, as well as the main application classes, 

are considered to be external to the database schema. The dependencies of interest are 

those coming from either an external class or schema-defining class, with exception of 

the calls local to a given class (e.g. between the getName() method in class Person and 

its name attribute). 
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Below the functionality of both applications is presented and annotated to 

describe the mechanisms used intentionally to make all interesting dependency kinds 

occur. 

“Address Book” application 

 

Fig. 38. The main window of the “Address book” test application 

This application provides a GUI-based interface to manipulate the Person objects 

and their Address properties (see Fig. 38). A person’s name is being set at object’s 

creation time, when also an (initially empty) Address object, connected by a regular 

reference is created for it. The Person objects can be added and removed. Their 

addresses and names can be modified through a separate option. In effect, the following 

dependency kinds occur in this application: 

• Database lookup dependency: after opening the provided federated database, the 

lookup of a database “People” occurs. 

• Database scan dependency: the “People” database is scanned for the instances of 

the class Person. 
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• Persistent objects’ operation call: needed to retrieve the strings denoting person’s 

name, as well as the city and street of its address, as well as to update those fields 

(encapsulated by appropriate operations). 

• Persistent objects’ direct access: for the sake of example, the functionality 

allowing to modify a person’s name uses direct access to persistent object’s attribute 

rather than a dedicated operation. 

“Department – Employee” application 

This application is provided to test proper extraction of some more specific 

schema constructs used here, as well as another kind of dependency, not occurring in 

the previous example. Similarly like the previous application, “Department-Employee” 

uses a GUI interface to create / retrieve / update / delete its entities, which in this case 

are objects of Department and Employee (inheriting from Person) classes. The 

following functionality is provided (cf. Fig. 39): 

• Adding and removing departments and the ability to select them and browse their 

employees. 

• Adding employees (with default salary) to the selected department and removing 

them. 

• Updating the employee’s salary. 

• Reassigning an employee to another defined department. 

In case of the removal of non-empty department, a new pseudo-department, called 

“UNNASSIGNED” is created and bound within the “Persons” database as a named root 

object (of the name “UNASSIGNED”), in order to make the employees of removed 

department still available. 
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Fig. 39. The main window of the “Department-Employee” test application 

Moreover, as can be seen in Fig. 37, Employees are connected with Departments 

using the ODBMS relationship mechanism rather than a plain reference. Another 

schema construct not occurring in the first application is the root object, registered 

within the scope of the “Persons” database. 

Summing up, the following dependency kinds are expected to be discovered 

during testing of this application: 

• Database lookup dependency – as in case of the first application. 

• Database scan dependency – scan for the “Department” class instances. 

• Persistent object’s operation call – the most common kind of dependency, 

similarly like in the first application. 

• Root object lookup: lookup of the Department class root object called 

“UNASSIGNED”, performed within the scope of the “Persons” database. 
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